228,447 research outputs found

    Contrastive Learning for Lifted Networks

    Full text link
    In this work we address supervised learning of neural networks via lifted network formulations. Lifted networks are interesting because they allow training on massively parallel hardware and assign energy models to discriminatively trained neural networks. We demonstrate that the training methods for lifted networks proposed in the literature have significant limitations and show how to use a contrastive loss to address those limitations. We demonstrate that this contrastive training approximates back-propagation in theory and in practice and that it is superior to the training objective regularly used for lifted networks.Comment: 9 pages, BMVC 201

    Nonparametric regression using deep neural networks with ReLU activation function

    Get PDF
    Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to logn\log n-factors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.Comment: article, rejoinder and supplementary materia

    Deep Learning Meets Sparse Regularization: A Signal Processing Perspective

    Full text link
    Deep learning has been wildly successful in practice and most state-of-the-art machine learning methods are based on neural networks. Lacking, however, is a rigorous mathematical theory that adequately explains the amazing performance of deep neural networks. In this article, we present a relatively new mathematical framework that provides the beginning of a deeper understanding of deep learning. This framework precisely characterizes the functional properties of neural networks that are trained to fit to data. The key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory, which are all techniques deeply rooted in signal processing. This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems
    corecore