37 research outputs found

    Use of RNS Based Pseudo Noise Sequence in DS-CDMA and 3G WCDMA

    Get PDF
    Code Division Multiple Access (CDMA) based on Spread Signal (SS) has emerged as one of the most important multiple access technologies for Second Generation (2G) and Third Generation (3G) wireless communication systems by its wide applications in many important mobile cellular standards. CDMA technique relies on spreading codes to separate dierent users or channels and its properties will govern the performance of the system. So many of the problems of communication systems based on CDMA technology stem from the spreading codes/sequences, which includes two sub-categories, one being the orthogonal codes, such as Walsh Hadamard (WH) codes and Orthogonal Variable Spreading Factor (OVSF) codes, and the other being pseudo-noise or Pseudo Random (PN) sequences, such as Gold sequences, Kasami sequences, m-sequences, etc. In this thesis a PN sequence generation based on Residue Arithmetic is investigated with an eort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. This interference-limited performance is due to the fact that all the existing CDMA codes used in mobile cellular standards does not consider external interferences, multipath propagation, Doppler eect etc. So the non-ideal correlation properties of the pseudo-random CDMA codes results in MAI when used in a multi-user system. The PN codes appear random yet they are completely deterministic in nature with a small set of initial conditions. Consequently this work focuses on CDMA code design approach based on Residue Number System (RNS) which should take into account as many real operational conditions as possible and to maintain a suciently large code set size.First, the thesis reviews RNS, DS-CDMA and CDMA codes that are already implemented in various mobile cellular standards. Then the new PN Sequencegenerator design based on RNS is discussed. Comparison of the generated PN sequence with respect to other standard sequence is done in terms of number of codes and correlation properties. Monte-Carlo simulations with the generated sequence are carried out for performance analysis under multi-path environment. The system has been evaluated in AWGN, Rayleigh Fading channel and dierent Stationary Multipath Channels for dierent cross-correlation threshold. It is known that orthogonal Codes are used to multiplex more than one signal for downlink transmission over cellular networks. This downlink transmission is prone to self interference caused by the loss of orthogonality between spreading codes due to multipath propagation. This issue is investigated in detail with respect to WCDMA standards, which is very good representative for CDMA based 3G mobile cellular systems where the channelization code is OVSF code. The code assignment blocking (CAB) (If a particular code in the tree is used in a cell, then all its parent codes and child codes should not be used in the same cell to maintain orthogonality among the users) problem of OVSF codes restricts the number of available codes for a given cell. Since the 3rd generation WCDMA mobile communication systems apply the same multiple access technique, the generated sequence can also be the channelization code for downlink WCDMA system to mitigate the the same. The performance of the system is compared with Walsh Hadamard code over multipath AWGN and dierent Fading channels. This thesis work shows that RNS based PN sequence has enhanced performance to that of other CDMA codes by comparing the bit error probability in multi- user and multipath environment thus contributing a little towards the evolution of next generation CDMA technology

    Modeling and characterization of urban radio channels for mobile communications

    Get PDF
    Results of this thesis contribute in modeling and characterization of radio channels for future mobile communications. The results are presented mainly in three parts: a) modeling of propagation mechanisms, b) methodology of developing a propagation model, c) characterization of urban radio channel. One of the main propagation physical phenomena that have an important role in diverting signals to non line of sight scenarios is the diffraction process. This thesis proposes diffraction coefficients that have better agreement with finite difference time domain solution and rigorous diffraction theory than the coefficient commonly used in propagation predictions for mobile communications. The importance of diffuse scattering has also been investigated and showed that this physical process may have a key role in urban propagation, with a particular impact on the delay spread and angular spread of the signal at the receiver. This thesis proposes wideband propagation models for main and perpendicular streets of urban street grids. The propagation models are ray-based and are given in explicit mathematical expressions. Each ray is characterized in terms of its amplitude, delay, and angle of arrival, angle of departure for vertical and horizontal polarizations. Each of these characteristics is given in a closed mathematical form. Having wideband propagation model in explicit expression makes its implementation easy and computation fast. Secondary source modeling approach for perpendicular streets has also been introduced in this thesis. The last part of the thesis deals with characterization of urban radio channels for extracting parameters that help in successful design of mobile communication systems. Knowledge of channel characteristics enables reaching optimum trade off between system performance and complexity. This thesis analyzes measurement results at 2 GHz to extract channel parameters in terms of Rake finger characteristics in order to get information that helps to optimize Rake receiver design for enhanced-IMT2000 systems. Finger life distance has also been investigated for both micro- and small cell scenarios. This part of the thesis also presents orthogonality factor of radio channel for W-CDMA downlink at different bandwidths. Characterization of dispersion metrics in delay and angular domains for microcellular channels is also presented at different base station antenna heights. A measure of (dis-) similarity between multipath components in terms of separation distance in delay and angular domains is introduced by the concept of distance function, which is a step toward in development of algorithm extraction and analysis multipath clustering. In summary, the significant contributions of the thesis are in three parts. 1) Development of new diffraction coefficients and corrections of limitations of existing one for accurate propagation predictions for mobile communications. 2) Development of wideband propagation models for urban street grid. The novelty of the model is the development in explicit mathematical expressions. The developed models can be used to study propagation problem in microcellular urban street grids. 3) Presenting channel parameters that will help in the design of future mobile communication systems (enhanced-IMT2000), like number of active fingers, finger life distance, and orthogonality factors for different bandwidths. In addition, a technique based on multipath separation distance is proposed as a step toward in development of algorithms for extraction and analysis of multipath clusters.reviewe

    Dynamic length equaliser and its application to the DS-CDMA systems

    Get PDF

    Multi-Cell Uplink Radio Resource Management. A LTE Case Study

    Get PDF

    3G Wideband CDMA : packet-based optimisation for high data-rate downlink transmission

    No full text
    A third generation (3G) of mobile communication systems, based on Wideband CDMA, are intended to offer high-speed packet-based services. Network operators wish to maximise the throughput in the downlink of3G systems, which requires efficient allocation ofresources. This thesis considers the problem ofmaximising throughput in an interference dominated channel. Cooperative broadcasting is a theoretical technique to mitigate this problem. Its implementation in practical systems requires efficient resource allocati.on to maximise the thr(oughput whilst meeting system and user-imposed constramts. A resource allocation approach is presented for implementing cooperative broadcasting. Users are paired and a teclmique for allocating resources between the pair is developed. Then, a method for pairing the users is considered. Simulation results are presented, which show a throughput improvement over existing resource allocation approaches. The problem ofcontrolling the distribution ofrandomly arriving data to meet the resource allocation specifications is examined. A single-threshold buffer is proposed, which requires fewer calculations than an existing double-threshold buffer. Simulation results are presented which show a throughput improvement may be realised, greater than that which would achievable using other rate control schemes. Cooperative broadcasting may lead to transmissions to some users being allocated low power. When full channel infonnation is available at the transmitter, a water filling solution may be used to maximise capacity. However, when combined with buffer management, erasure may result. This erasure may be overcome using an erasure protection code. Such a code is examined. When combined with Turbo coding, ajoint detector may be used for providing error and erasure protection. Analysis ofthis detector shows a lower limit on the error rate, dependent on the probability of erasure. Simulation results show that using this approach the error rate is significantly improved. This code can then be used to increase capacity, whilst achieving low error rates.Imperial Users onl

    QoS management in UMTS terrestrial radio access FDD networks

    Get PDF
    This work investigates the role and importance of some of the key aspects of QoS planning, provisioning, monitoring and optimisation (QoS Management) for UMTS Terrestrial Radio Access (UTRA) FDD networks within the framework of the 3rd Generation Partnership Project (3GPP). Firstly, the differences between Quality of end user Experience (QoE) and Quality of Service (QoS) are explained. This is followed by a review of 3GPP requirements for QoS concept and architecture. Then all models and the main assumptions in this dissertation are presented. Based on these, original QoS mechanisms in the radio access network domain, means and methods for QoS provisioning, planning, monitoring and "optimisation" are discussed. Simulation results showed substantial spectral efficiency gains provided by service (or user) differentiation in UTRAN by means of priorities and differentiated parameter settings. When appropriately configured, the proposed QoS mechanisms can greatly reduce the need for bandwidth. Performance results proved also the proposed virtual time simulator to be an appropriate tool for service driven WCDMA radio interface dimensioning and detailed radio network planning. It is also shown that measuring QoS performance by a proper classification of counters (and or gauges), based on a particular subset of radio access bearer attributes, is a promising technique for assessing performances of service applications through WCDMA networks. With this new method there is no need to trace upper layer protocols at different interfaces or dumping data in mobile terminals. The proposed metrics allow operators to measure the bandwidth required for robust statistical reliability, to assess and exploit statistical sharing of resources, to configure QoS functions effectively, and to monitor QoE. The application of the proposed technique is not limited to the WCDMA Radio Network Subsystem (RNS), yet it can be deployed in any radio access and packet core network supporting mapping of performance indicators onto a particular subset of QoS attributes. Finally, in order to maximise the performance of the available services in UTRAN, at a given QoE, simulation results showed clear needs for the network administrator to adapt the parameter settings to diverse input application traffic conditions and the proposed genetic approach to be an appropriate solution space search algorithm for this purpose.reviewe

    An Extensive Study on the Performance Evaluation and Scheduling of HeNBs

    Get PDF
    Since the dawn of mobile communication systems, reducing the cell size has been one option to increase the signal-to-interference-plus-noise ratio (SINR) in both links. The impact of this reduction can be perfectly understood by considering Shannon’s law. This work studies in detail the performance of Home eNBs (HeNBs), nodes with a smaller coverage area. After a detailed theoretical study of the SINR, a simulation approach is used to extract performance results in small cell indoor scenarios. Results corresponding to the goodput, delay and packet loss ratio are analyzed. Based on an improved version of LTE-Sim, the proportional fair, frame level scheduler (FLS) and exponential rule are tested in an indoor environment. With the saturation conditions taken into consideration, the FLS performs better than the other schedulers. This work shows that with the considered applications, it is possible to achieve a reduction in the transmitter power of HeNBs without compromising the small cell network performance.This work was supported by Foundation for Science and Technology/Ministry of Science, Technology and Higher Education (FCT/MCTES) through national funds and, when applicable, co-funded EU funds under the project UIDB/50008/2020, COST CA 15104 Inclusive Radio Communication Networks for 5G and Beyond (IRACON), Optical Radio Convergence Infrastructure for Communications and Power Delivering (ORCIP, 22141-01/SAICT/2016), TeamUp5G and CONQUEST (CMU/ECE/0030/2017). The TeamUp5G project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie project number 813391.info:eu-repo/semantics/publishedVersio

    Self-Organising Load Balancing for OFDMA Cellular Networks

    Get PDF
    In this thesis, self-organising load balancing is investigated to deal with the uneven load distribution in OFDMA based cellular networks. In single-hop cellular networks, a self- organising cluster-based cooperative load balancing (CCLB) scheme is proposed to overcome the ‘virtual partner’ and the ‘aggravating load’ problems confronted in the conventional mobility load balancing schemes. Theoretical analysis and simulation results show that the proposed scheme can effectively reduce the call blocking probability, the handover failure rate, and the hot-spot cell’s load. The proposed CCLB scheme consists of two stages: partner cell selection and traffic shifting. In the partner cell selection stage, a user-vote assisted clustering algorithm is proposed, which jointly considers the users’ channel condition and the surrounding cells’ load. This algorithm can select appropriate neighbouring cells as partners to construct the load balancing cluster, and deal with the ‘virtual partner’ problem. In the traffic shifting stage, a relative load response model (RLRM) is designed. RLRM coordinates multiple hot-spot cells’ shifting traffic towards their public partner, thus mitigating the ‘aggravating load’ problem of the public partner. Moreover, a traffic offloading optimisation algorithm is proposed to balance the hot-spot cell’s load within the load balancing cluster and to minimise its partners’ average call blocking probability. The CCLB scheme is modified to apply in multi-hop cellular networks with relays deployed. Both fixed relay and mobile user relay scenarios are considered. For fixed relay cellular networks, a relay-level user shifting algorithm is proposed. This algorithm jointly considers users’ channel condition and spectrum usage of fixed relay, in order to reduce the handover failure rate and deal with the ‘aggravating load’ problem of fixed relay. In the mobile user relay scenario, the user relaying assisted traffic shifting algorithm is proposed to improve the link quality of shifted edge users, which brings about an increase in the achievable rate of shifted edge users and decrease in the handover failure rate
    corecore