612 research outputs found

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1≤Nc≤N1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model

    Distributed space time block coding and application in cooperative cognitive relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for cooperative relay networks is considered in this thesis. Rayleigh frequency flat and selective fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing (OFDM) type transmission approach are employed to mitigate synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. A novel detection scheme is then proposed for decode-and-forward and amplify-and-forward networks with closed-loop extended orthogonal coding and closed-loop quasi-orthogonal coding which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approach and its ability to mitigate synchronization errors

    Cross-layer aided energy-efficient routing design for ad hoc networks

    No full text
    In this treatise, we first review some basic routing protocols conceived for ad hoc networks, followed by some design examples of cross-layer operation aided routing protocols. Specifically, cross-layer operation across the PHYsical layer (PHY), the Data Link layer (DL) and even the NETwork layer (NET) is exemplified for improving the energy efficiency of the entire system. Moreover, the philosophy of Opportunistic Routing (OR) is reviewed for the sake of further reducing the system's energy dissipation with the aid of optimized Power Allocation (PA). The system's end-to-end throughput is also considered in the context of a design example

    A Markov Chain Approach to IEEE 802.11WLAN Performance Analysis

    Get PDF
    Wireless communication always attracts extensive research interest, as it is a core part of modern communication technology. During my PhD study, I have focused on two research areas of wireless communication: IEEE 802.11 network performance analysis, and wireless cooperative retransmission. The first part of this thesis focuses on IEEE 802.11 network performance analysis. Since IEEE 802.11 technology is the most popular wireless access technology, IEEE 802.11 network performance analysis is always an important research area. In this area, my work includes the development of three analytical models for various aspects of IEEE 802.11 network performance analysis. First, a two-dimensional Markov chain model is proposed for analysing the performance of IEEE 802.11e EDCA (Enhanced Distributed Channel Access). With this analytical model, the saturated throughput is obtained. Compared with the existing analytical models of EDCA, the proposed model includes more correct details of EDCA, and accordingly its results are more accurate. This better accuracy is also proved by the simulation study. Second, another two-dimensional Markov chain model is proposed for analysing the coexistence performance of IEEE 802.11 DCF (Distributed Coordination Function) and IEEE 802.11e EDCA wireless devices. The saturated throughput is obtained with the proposed analytical model. The simulation study verifies the proposed analytical model, and it shows that the channel access priority of DCF is similar to that of the best effort access category in EDCA in the coexistence environment. The final work in this area is a hierarchical Markov chain model for investigating the impact of data-rate switching on the performance of IEEE 802.11 DCF. With this analytical model,the saturated throughput can be obtained. The simulation study verifies the accuracy of the model and shows the impact of the data-rate switching under different network conditions. A series of threshold values for the channel condition as well as the number of stations are obtained to decide whether the data-rate switching should be active or not. The second part of this thesis focuses on wireless cooperative retransmission. In this thesis, two uncoordinated distributed wireless cooperative retransmission strategies for single-hop connection are presented. In the proposed strategies, each uncoordinated cooperative neighbour randomly decide whether it should transmit to help the frame delivery depending on some pre-calculated optimal transmission probabilities. In Strategy 1, the source only transmits once in the first slot, and only the neighbours are involved in the retransmission attempts in the subsequent slots. In Strategy 2, both the source and the neighbours participate in the retransmission attempts. Both strategies are first analysed with a simple memoryless channel model, and the results show the superior performance of Strategy 2. With the elementary results for the memoryless channel model, a more realistic two-state Markov fading channel model is used to investigate the performance of Strategy 2. The simulation study verifies the accuracy of our analysis and indicates the superior performance of Strategy 2 compared with the simple retransmission strategy and the traditional two-hop strategy

    Optimum Design of Spectral Efficient Green Wireless Communications

    Get PDF
    This dissertation focuses on the optimum design of spectral efficient green wireless communications. Energy efficiency (EE), which is defined as the inverse of average energy required to successfully deliver one information bit from a source to its destination, and spectral efficiency (SE), which is defined as the average data rate per unit bandwidth, are two fundamental performance metrics of wireless communication systems. We study the optimum designs of a wide range of practical wireless communication systems that can either maximize EE, or SE, or achieve a balanced tradeoff between the two metrics. There are three objectives in this dissertation. First, an accurate frame error rate (FER) expression is developed for practical coded wireless communication systems operating in quasi-static Rayleigh fading channels. The new FER expression enables the accurate modeling of EE and SE for various wireless communication systems. Second, the optimum designs of automatic repeat request (ARQ) and hybrid ARQ (HARQ) systems are performed to by using the EE and SE as design metrics. Specifically, a new metric of normalized EE, which is defined as the EE normalized by the SE, is proposed to achieve a balanced tradeoff between the EE and SE. Third, a robust frequency-domain on-off accumulative transmission (OOAT) scheme has been developed to achieve collision-tolerant media access control (CT-MAC) in a wireless network. The proposed frequency domain OOAT scheme can improve the SE and EE by allowing multiple users to transmit simultaneously over the same frequency bands, and the signal collisions at the receiver can be resolved by using signal processing techniques in the physical layer

    MIMO communication systems: receiver design and diversity-multiplexing tradeoff analysis

    Get PDF
    After a few decades\u27 evolution of wireless communication systems, to ensure reliable high-speed communication over unreliable wireless channels is still one of the major challenges facing researchers and engineers. The use of multiple antennas at transmitter and receiver, known as multiple-input multiple-output (MIMO) communications, is one promising technology delivering desired wireless services. The main goal of this thesis is to study two important issues in wireless MIMO communication systems: receiver design for coded MIMO systems, and diversity-multiplexing tradeoff analysis in general fading channels;In the first part of this thesis, we decompose the receiver design problem into two sub-problems: MIMO channel estimation and MIMO detection. For the MIMO channel estimation, we develop an expectation-maximization (EM) based semi-blind channel and noise covariance matrix estimation algorithm for space-time coding systems under spatially correlated noise. By incorporating the proposed channel estimator into the iterative receiver structure, both the channel estimation and the error-control decoding are improved significantly. We also derive the modified Cramer-Rao bounds (MCRB) for the unknown parameters as the channel estimation performance metric, and demonstrate that the proposed channel estimation algorithm can achieve the MCRB after several iterations. For the MIMO detection, we propose a novel low-complexity MIMO detection algorithm, which has only cubic order computational complexity, but with near-optimal performance. For a 4x4 turbo-coded system, we show that the proposed detector had the same performance as the maximum a posteriori (MAP) detector for BPSK modulation, and 0.1 dB advantage over the approximated MAP detector (list sphere decoding algorithm) for 16-QAM modulation at BER = 10-4;In the second part of this thesis, we derive the optimal diversity-multiplexing tradeoff for general MIMO fading channels, which include different fading types as special cases. We show that for a MIMO system with long coherence time, the optimal diversity-multiplexing tradeoff is also a piecewise linear function, and only the first segment is affected by different fading types. We proved that under certain full-rank assumptions spatial correlation has no effect on the optimal tradeoff. We also argued that non-zero channel means in general are not beneficial for multiplexing-diversity tradeoff
    • …
    corecore