268 research outputs found

    Theoretical analysis of local search and simple evolutionary algorithms for the generalized travelling salesperson problem

    Get PDF
    The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which metaheuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a cluster-based approach and a node-based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this article, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the node-based approach solves the hard instance of the cluster-based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the node-based approach for a class of Euclidean instances.Mojgan Pourhassan, Frank Neuman

    A Parameterized Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms

    Full text link
    Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. With this paper, we start the runtime analysis of evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem (GMST), and the generalised travelling salesman problem (GTSP) in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl (2012) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) EA working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the global structure representation enables to solve the problem in fixed-parameter time. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other's hard instances very efficiently. For the generalised travelling salesman problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) EA working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem

    A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms

    Get PDF
    Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. In this paper, we analyse the runtime of some evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem and the generalised travelling salesperson problem in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl (2012) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) evolutionary algorithm working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the problem can be solved in fixed-parameter time with the global structure representation. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other’s hard instances very efficiently. For the generalised travelling salesperson problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) evolutionary algorithm working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem

    Application of genetic algorithms to the travelling salesperson problem.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1996.Genetic Algorithms (GAs) can be easily applied to many different problems since they make few assumptions about the application domain and perform relatively well. They can also be modified with some success for handling a particular problem. The travelling salesperson problem (TSP) is a famous NP-hard problem in combinatorial optimization. As a result it has no known polynomial time solution. The aim of this dissertation will be to investigate the application of a number of GAs to the TSP. These results will be compared with those of traditional solutions to the TSP and with the results of other applications of the GA to the TSP

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF

    Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.

    Get PDF
    Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to their theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed time budget. We follow this approach and present a fixed budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1 + 1) EA and (1 + λ) EA algorithms for the TSP in a smoothed complexity setting and derive the lower bounds of the expected fitness gain for a specified number of generations

    Cover-Encodings of Fitness Landscapes

    Full text link
    The traditional way of tackling discrete optimization problems is by using local search on suitably defined cost or fitness landscapes. Such approaches are however limited by the slowing down that occurs when the local minima that are a feature of the typically rugged landscapes encountered arrest the progress of the search process. Another way of tackling optimization problems is by the use of heuristic approximations to estimate a global cost minimum. Here we present a combination of these two approaches by using cover-encoding maps which map processes from a larger search space to subsets of the original search space. The key idea is to construct cover-encoding maps with the help of suitable heuristics that single out near-optimal solutions and result in landscapes on the larger search space that no longer exhibit trapping local minima. We present cover-encoding maps for the problems of the traveling salesman, number partitioning, maximum matching and maximum clique; the practical feasibility of our method is demonstrated by simulations of adaptive walks on the corresponding encoded landscapes which find the global minima for these problems.Comment: 15 pages, 4 figure

    Algorithms for Large Orienteering Problems

    Get PDF
    In this thesis, we have developed algorithms to solve large-scale Orienteering Problems. The Orienteering Problem is a combinatorial optimization problem were given a weighted complete graph with vertex profits and a maximum distance constraint, the goal is to find the simple cycle which maximizes the sum of the profits of the visited vertices. To solve the Orienteering Problem, we have developed an evolutionary algorithm and an Branch-and-Cut algorithm. One of the key characteristics of the evolutionary algorithm is to work with unfeasible solutions. From the point of view of genetic operators, the main contribution has been the development of the Edge Recombination Crossover for the Orienteering Problem, which in a wider context it is also valid for any cycle problem. Another contribution has been the developed local search to handle large problems. The Branch-and-Cut algorithm includes new contributions in the separation algorithms of inequalities stemming from the cycle problem, in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of the problem. At the same time, we have generalized for cycle problems the support graph shrinking techniques and procedures to speed up the exact separation algorithms for subcycle elimination constraints. The experiments carried out in large-sized instances, up to 7393 nodes, show that both algorithms achieve outstanding results, both in terms of the quality of solutions and in terms of the execution time.BERC.2014-2017 SEV-2013-0323 PID2019-104933GB-I00 MTM2015-65317-

    Algorithms for large orienteering problems

    Get PDF
    185 p.Tesi lan honetan, tamaina handiko Orientazio Problemak ebazteko algoritmoak garatu ditugu. Orientazio Problema optimizazio konbinatorioko problema bat da: herri multzo bat eta hauen arteko distantzia emanik, herri bakoitzak bere saria duelarik, eta ibilbidearen distantzia osoaren murrizketa bat ezarririk, problemaren helburua sarien batura maximizatzen duen ibilbidea aurkitzean datza. Orientazio Problema ebazteko, algoritmo ebolutibo bat eta Branch-and-Cut algoritmo bat garatu ditugu. Algoritmo ebolutiboaren ezaugarri nagusienetako bat, soluzio ez bideragarriekin lan egitea da. Eragile genetikoen ikuspuntutik algoritmo honen ekarpen nagusia Orientazio Problemarentzako proposatutako Ertzen Birkonbinazio Gurutzaketa da. Beste ekarpen bat problema handiak ebazteko aproposa den bilaketa lokala da. Branch-and-Cut algoritmoak berriz, ziklo problementzako banantze algoritmoetan, banantze begiztan, aldagaien baloratzean, eta problemaren goi eta behe-mugen kalkuluan ditu ekarpen nagusiak. Aldi berean, ziklo problementzako algoritmo zehatzaren parte diren euskarri grafoen sinplifikazio teknika eta azpizikloak identifikatzeko separazio algoritmoak aztertu ditugu. Tamaina handiko problemekin, 7393 herrirainokoak, egindako esperimentuek erakusten dute bi algoritmoek primerako emaitzak lortzen dituztela, bai soluzioen kalitatearen aldetik eta bai algoritmoen azkartasunaren aldetik ere.En esta tesis, hemos desarrollado algoritmos para resolver instancias de gran tamaño para el Problema de Orientación. El Problema de Orientación es un problema de optimización combinatoria en el cual, dado un grafo, con distancias asociadas en las aristas y premios en los vértices, y la restricción de longitud máxima de la ruta, el objetivo es maximizar la suma de recompensas de las ciudades visitadas.Para resolver el Problema de Orientación, hemos desarrollado un algoritmo evolutivo y un algoritmo Branch-and-Cut. La principal característica del algoritmo evolutivo es el uso de soluciones infactibles durante de la búsqueda. Desde el punto de vista de los operadores genéticos, la contribución más notable es el desarrollo del Cruce de Recombinación de Aristas para el Problema de Orientación. Otra contribución ha sido el desarrollo de una búsqueda local que permite abarcar problemas de gran tamaño. El algoritmo Branch-and-Cut incluye contribuciones en los algoritmos de separación para problemas de ciclos, en el bucle de separación, en la estimación de precios de las variables, y en el cálculo de las cotas inferiores y superiores del problema. Al mismo tiempo, generalizamos para problemas de ciclos, la contracción de grafos soporte y procedimientos para acelerar la separación exacta de las restricciones de eliminación de subciclos. Los experimentos llevados a cabo en problemas de gran tamaño, problemas de hasta 7393 nodos, muestran que ambos algoritmos obtienen resultados excelentes, en términos de la calidad de la solución y en términos del tiempo de ejecución.-In this thesis, we have developed algorithms to solve large-scale Orienteering Problems. The Orienteering Problem is a combinatorial optimization problem were given a weighted complete graph with vertex profits and a maximum distance constraint, the goal is to find the simple cycle which maximizes the sum of the profits of the visited vertices. To solve the Orienteering Problem, we have developed an evolutionary algorithm and a Branch-and-Cut algorithm. One of the key characteristics of the evolutionary algorithm is to work with unfeasible solutions. From the point of view of genetic operators, the main contribution has been the development of the Edge Recombination Crossover for the Orienteering Problem, which in a wider context it is also valid for any cycle problem. Another contribution has been the developed local search to handle large problems. The Branch-and-Cut algorithm includes new contributions in the separation algorithms of inequalities stemming from the cycle problem, in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of the problem. At the same time, we have generalized for cycle problems the support graph shrinking techniques and procedures to speed up the exact separation algorithms for subcycle elimination constraints. The experiments carried out in large-sized instances, up to 7393 nodes, show that both algorithms achieve outstanding results, both in terms of the quality of solutions and in terms of the execution time.bcam:basque center for applied mathematic
    corecore