2 research outputs found

    Performance and analysis of Quadratic Residue Codes of lengths less than 100

    Full text link
    In this paper, the performance of quadratic residue (QR) codes of lengths within 100 is given and analyzed when the hard decoding, soft decoding, and linear programming decoding algorithms are utilized. We develop a simple method to estimate the soft decoding performance, which avoids extensive simulations. Also, a simulation-based algorithm is proposed to obtain the maximum likelihood decoding performance of QR codes of lengths within 100. Moreover, four important theorems are proposed to predict the performance of the hard decoding and the maximum-likelihood decoding in which they can explore some internal properties of QR codes. It is shown that such four theorems can be applied to the QR codes with lengths less than 100 for predicting the decoding performance. In contrast, they can be straightforwardly generalized to longer QR codes. The result is never seen in the literature, to our knowledge. Simulation results show that the estimated hard decoding performance is very accurate in the whole signal-to-noise ratio (SNR) regimes, whereas the derived upper bounds of the maximum likelihood decoding are only tight for moderate to high SNR regions. For each of the considered QR codes, the soft decoding is approximately 1.5 dB better than the hard decoding. By using powerful redundant parity-check cuts, the linear programming-based decoding algorithm, i.e., the ACG-ALP decoding algorithm performs very well for any QR code. Sometimes, it is even superior to the Chase-based soft decoding algorithm significantly, and hence is only a few tenths of dB away from the maximum likelihood decoding.Comment: submitted to IEEE Transactions on Information Theor

    A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices

    Full text link
    In quantum coding theory, stabilizer codes are probably the most important class of quantum codes. They are regarded as the quantum analogue of the classical linear codes and the properties of stabilizer codes have been carefully studied in the literature. In this paper, a new but simple construction of stabilizer codes is proposed based on syndrome assignment by classical parity-check matrices. This method reduces the construction of quantum stabilizer codes to the construction of classical parity-check matrices that satisfy a specific commutative condition. The quantum stabilizer codes from this construction have a larger set of correctable error operators than expected. Its (asymptotic) coding efficiency is comparable to that of CSS codes. A class of quantum Reed-Muller codes is constructed, which have a larger set of correctable error operators than that of the quantum Reed-Muller codes developed previously in the literature. Quantum stabilizer codes inspired by classical quadratic residue codes are also constructed and some of which are optimal in terms of their coding parameters.Comment: 34 pages, 3 figures, 5 tables, index terms add, abstract and conclusion slightly modifie
    corecore