7,429 research outputs found

    Real-Time Local Volt/VAR Control Under External Disturbances with High PV Penetration

    Full text link
    Volt/var control (VVC) of smart PV inverter is becoming one of the most popular solutions to address the voltage challenges associated with high PV penetration. This work focuses on the local droop VVC recommended by the grid integration standards IEEE1547, rule21 and addresses their major challenges i.e. appropriate parameters selection under changing conditions, and the control being vulnerable to instability (or voltage oscillations) and significant steady state error (SSE). This is achieved by proposing a two-layer local real-time adaptive VVC that has two major features i.e. a) it is able to ensure both low SSE and control stability simultaneously without compromising either, and b) it dynamically adapts its parameters to ensure good performance in a wide range of external disturbances such as sudden cloud cover, cloud intermittency, and substation voltage changes. A theoretical analysis and convergence proof of the proposed control is also discussed. The proposed control is implementation friendly as it fits well within the integration standard framework and depends only on the local bus information. The performance is compared with the existing droop VVC methods in several scenarios on a large unbalanced 3-phase feeder with detailed secondary side modeling.Comment: IEEE Transactions on Smart Grid, 201

    Numerical Study of TAP Metastable States in 3-body Ising Spin Glasses

    Full text link
    The distribution of solutions of the Thouless-Anderson-Palmer equation is studied by extensive numerical experiments for fully connected 3-body interaction Ising spin glass models in a level of annealed calculation. A recent study predicted that when the equilibrium state of the system is characterized by one-step replica symmetry breaking, the distribution is described by a Becchi-Rouet-Stora-Tyutin (BRST) supersymmetric solution in the relatively low free energy region, whereas the BRST supersymmetry is broken for higher values of free energy (Crisanti et al., Phys. Rev. B 71 (2005) 094202). Our experiments qualitatively reproduce the discriminative behavior of macroscopic variables predicted by the theoretical assessment.Comment: 13 pages, 4 figure

    Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis

    Full text link
    A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it. We present a linear stability analysis for this system. The forces driving convection are due to the interaction of the applied electric field with space charge which develops near the free surfaces. Our analysis is similar to that for the two-dimensional B\'enard problem, but with important differences due to coupling between the charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter R{\cal R} as a function of the dimensionless wave number Îș{\kappa}. R{\cal R}, which is proportional to the square of the applied voltage, is analogous to the Rayleigh number. The critical values Rc{{\cal R}_c} and Îșc{\kappa_c} are found from the minimum of the stability boundary, and its curvature at the minimum gives the correlation length Ο0{\xi_0}. The characteristic time scale τ0{\tau_0}, which depends on a second dimensionless parameter P{\cal P}, analogous to the Prandtl number, is determined from the linear growth rate near onset. Ο0{\xi_0} and τ0{\tau_0} are coefficients in the Ginzburg-Landau amplitude equation which describes the flow pattern near onset in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more info, see http://mobydick.physics.utoronto.ca

    One Dimensional Kondo Lattice Model Studied by the Density Matrix Renormalization Group Method

    Full text link
    Recent developments of the theoretical investigations on the one-dimensional Kondo lattice model by using the density matrix renormalization group (DMRG) method are discussed in this review. Short summaries are given for the zero-temperature DMRG, the finite-temperature DMRG, and also its application to dynamic quantities. Away from half-filling, the paramagnetic metallic state is shown to be a Tomonaga-Luttinger liquid with the large Fermi surface. For the large Fermi surface its size is determined by the sum of the densities of the conduction electrons and the localized spins. The correlation exponent K_rho of this metallic phase is smaller than 1/2. At half-filling the ground state is insulating. Excitation gaps are different depending on channels, the spin gap, the charge gap and the quasiparticle gap. Temperature dependence of the spin and charge susceptibilities and specific heat are discussed. Particularly interesting is the temperature dependence of various excitation spectra, which show unusual properties of the Kondo insulators.Comment: 18 pages, 23 Postscript figures, REVTe

    Cournot Versus Supply Functions: What does the Data Tell us?

    Get PDF
    The liberalization of the electricity sector increases the need for realistic and robust models of the oligopolistic interaction of electricity firms. This paper compares the two most popular models: Cournot and the Supply Function Equilibrium (SFE), and tests which model describes the observed market data best. Using identical demand and supply specifications, both models are calibrated to the German electricity market by varying the contract cover of firms. Our results show that each model explains an identical fraction of the observed price variation. We therefore suggest using Cournot models for short term analysis, as more market details, such as network constraints, can be accommodated. As the SFE model is less sensitive to the choice of the calibration parameters, it might be more appropriate for long term analysis, such as the study of a merger.supply function equilibrium;Cournot competition;electricity markets

    Cournot versus supply functions: what does the data tell us?

    Get PDF
    The liberalization of the electricity sector increases the need for realistic and robust models of the oligopolistic interaction of electricity firms. This paper compares the two most popular models: Cournot and the Supply Function Equilibrium (SFE), and tests which model describes the observed market data best. Using identical demand and supply specifications, both models are calibrated to the German electricity market by varying the contract cover of firms. Our results show that each model explains an identical fraction of the observed price variation. We therefore suggest using Cournot models for short term analysis, as more market details, such as network constraints, can be accommodated. As the SFE model is less sensitive to the choice of the calibration parameters, it might be more appropriate for long term analysis, such as the study of a merger.supply function equilibrium, Cournot competition, electricity markets
    • 

    corecore