16 research outputs found

    Retinal ganglion cells : physiology and prosthesis

    Get PDF
    The retina is responsible for encoding different aspects of the visual world. Light enters the eyes and is converted by the photoreceptors into electrochemical signals. These signals are processed by the retinal network and proceed afferently to the brain via the axons of the retinal ganglion cells (RGCs). The RGCs outputs are in the form of action potentials (spikes), which encrypt the visual information in terms of spike shape, firing frequencies, and the firing patterns. When the photoreceptors are gone due to disease, vision is lost. The idea of a retinal prosthesis is to activate the surviving RGCs by electrical stimulation in order to recreate vision. In this thesis, I have studied the physiological properties of the RGCs, and reconstructed natural RGC spike trains by electrical stimulation. Chapter 1 introduces the anatomy of the retina and the retinal neurons. How the RGCs respond to light. Electrical stimulation is also discussed. A brief historical summary of the receptive field properties and cell physiology is also presented. Chapter 2 characterizes the intrinsic properties of 16 morphologically defined types of rat RGCs. The intrinsic properties include the biophysical properties due to morphology and dendritic stratification, in addition to physiological properties such as firing behaviours. These properties are also compared with the cat RGC intrinsic properties in order to investigate the variations between the morphologically similar RGCs of the two species. The results suggest that the RGCs among species, even with similar morphologies, do not have conservative intrinsic properties. Chapter 3 examines the details of the spiking properties of the different rat RGC types. Spikes are initiated at the axonal initial segment. A 'single' spike recorded at the soma consists of an axonal spike and a somatic spike. The existence of the two spikes can be recognized by two humps in the phase plot, and further revealed in the higher derivatives of the membrane potential. A principal component analysis shows that the parameters extracted from the phase plots are very useful for a model-independent rat RGC classification. Chapter 4 establishes the foundations for electrical stimulation of the retina. The question is to what extent optimum placement of the stimulating and reference electrodes might be affected by anatomical location. Here we placed the stimulating electrode above or below the retinal inner limiting membrane and found no statistical difference between the thresholds. In addition, reflective axonal spikes from the cut end are discussed. Chapter 5 combines the knowledge obtained in the previous chapters for the sole purpose of reproducing natural RGC outputs when using electrical stimulation. The light responses of the eye under saccadic movements were recorded and used to form the stimulus patterns. The reconstructions were performed on the brisk-transient (BT) and the brisk-sustained (BS) RGCs. Our results suggested that BT RGCs are more capable of following the stimulated stimulus patterns over a wide range of frequencies than the BS RGCs. Chapter 6 concludes the whole thesis

    Compressed Sensing Beyond the IID and Static Domains: Theory, Algorithms and Applications

    Get PDF
    Sparsity is a ubiquitous feature of many real world signals such as natural images and neural spiking activities. Conventional compressed sensing utilizes sparsity to recover low dimensional signal structures in high ambient dimensions using few measurements, where i.i.d measurements are at disposal. However real world scenarios typically exhibit non i.i.d and dynamic structures and are confined by physical constraints, preventing applicability of the theoretical guarantees of compressed sensing and limiting its applications. In this thesis we develop new theory, algorithms and applications for non i.i.d and dynamic compressed sensing by considering such constraints. In the first part of this thesis we derive new optimal sampling-complexity tradeoffs for two commonly used processes used to model dependent temporal structures: the autoregressive processes and self-exciting generalized linear models. Our theoretical results successfully recovered the temporal dependencies in neural activities, financial data and traffic data. Next, we develop a new framework for studying temporal dynamics by introducing compressible state-space models, which simultaneously utilize spatial and temporal sparsity. We develop a fast algorithm for optimal inference on such models and prove its optimal recovery guarantees. Our algorithm shows significant improvement in detecting sparse events in biological applications such as spindle detection and calcium deconvolution. Finally, we develop a sparse Poisson image reconstruction technique and the first compressive two-photon microscope which uses lines of excitation across the sample at multiple angles. We recovered diffraction-limited images from relatively few incoherently multiplexed measurements, at a rate of 1.5 billion voxels per second

    Clamp-assisted retractor advancement for lower eyelid involutional entropion

    Get PDF
    Scientific Poster 144PURPOSE: To describe a novel approach to internal repair of lower lid entropion using the Putterman clamp. METHODS: Retrospective, consecutive case series of patients with entropion who underwent retractor advancement using the clamp. RESULTS: Seven eyes of 6 patients (average age: 80; 4 women and 2 men) were analyzed. Complete resolution was achieved in 5 of the 6 patients (83.3%). The 1 patient with recurrence had 2 previous entropion surgeries on each eye over the past 4 years; there was lid laxity, and horizontal tightening was needed. No severe adverse events occurred in the patients. CONCLUSION: Clamp-assisted lower lid retractor advancement offers a safe and effective, minimally invasive approach to involutional entropion. Further study is needed to assess its role in recurrent entropion.postprin

    The uniqueness of the message in a retinal ganglion cell spike train and its implication for retinal prostheses

    No full text

    Annual report, 1990

    Get PDF

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF
    corecore