3,588 research outputs found

    The threshold for combs in random graphs

    Full text link
    For knk\mid n let Combn,kComb_{n,k} denote the tree consisting of an (n/k)(n/k)-vertex path with disjoint kk-vertex paths beginning at each of its vertices. An old conjecture says that for any k=k(n)k=k(n) the threshold for the random graph G(n,p)G(n,p) to contain Combn,kComb_{n,k} is at plognnp\asymp \frac{\log n}n. Here we verify this for kClognk \leq C\log n with any fixed C>0C>0. In a companion paper, using very different methods, we treat the complementary range, proving the conjecture for kκ0lognk\geq \kappa_0 \log n (with κ04.82\kappa_0\approx 4.82).Comment: 9 page

    Sharp threshold for embedding combs and other spanning trees in random graphs

    Full text link
    When knk|n, the tree Combn,k\mathrm{Comb}_{n,k} consists of a path containing n/kn/k vertices, each of whose vertices has a disjoint path length k1k-1 beginning at it. We show that, for any k=k(n)k=k(n) and ϵ>0\epsilon>0, the binomial random graph G(n,(1+ϵ)logn/n)\mathcal{G}(n,(1+\epsilon)\log n/ n) almost surely contains Combn,k\mathrm{Comb}_{n,k} as a subgraph. This improves a recent result of Kahn, Lubetzky and Wormald. We prove a similar statement for a more general class of trees containing both these combs and all bounded degree spanning trees which have at least ϵn/log9n\epsilon n/ \log^9n disjoint bare paths length log9n\lceil\log^9 n\rceil. We also give an efficient method for finding large expander subgraphs in a binomial random graph. This allows us to improve a result on almost spanning trees by Balogh, Csaba, Pei and Samotij.Comment: 20 page

    Slow Encounters of Particle Pairs in Branched Structures

    Full text link
    On infinite homogeneous structures, two random walkers meet with certainty if and only if the structure is recurrent, i.e., a single random walker returns to its starting point with probability 1. However, on general inhomogeneous structures this property does not hold and, although a single random walker will certainly return to its starting point, two moving particles may never meet. This striking property has been shown to hold, for instance, on infinite combs. Due to the huge variety of natural phenomena which can be modeled in terms of encounters between two (or more) particles diffusing in comb-like structures, it is fundamental to investigate if and, if so, to what extent similar effects may take place in finite structures. By means of numerical simulations we evidence that, indeed, even on finite structures, the topological inhomogeneity can qualitatively affect the two-particle problem. In particular, the mean encounter time can be polynomially larger than the time expected from the related one particle problem.Comment: 8 pages, 12 figures; accepted for publication in Physical Review

    Cycle factors and renewal theory

    Full text link
    For which values of kk does a uniformly chosen 33-regular graph GG on nn vertices typically contain n/k n/k vertex-disjoint kk-cycles (a kk-cycle factor)? To date, this has been answered for k=nk=n and for klognk \ll \log n; the former, the Hamiltonicity problem, was finally answered in the affirmative by Robinson and Wormald in 1992, while the answer in the latter case is negative since with high probability most vertices do not lie on kk-cycles. Here we settle the problem completely: the threshold for a kk-cycle factor in GG as above is κ0log2n\kappa_0 \log_2 n with κ0=[112log23]14.82\kappa_0=[1-\frac12\log_2 3]^{-1}\approx 4.82. Precisely, we prove a 2-point concentration result: if kκ0log2(2n/e)k \geq \kappa_0 \log_2(2n/e) divides nn then GG contains a kk-cycle factor w.h.p., whereas if k<κ0log2(2n/e)log2nnk<\kappa_0\log_2(2n/e)-\frac{\log^2 n}n then w.h.p. it does not. As a byproduct, we confirm the "Comb Conjecture," an old problem concerning the embedding of certain spanning trees in the random graph G(n,p)G(n,p). The proof follows the small subgraph conditioning framework, but the associated second moment analysis here is far more delicate than in any earlier use of this method and involves several novel features, among them a sharp estimate for tail probabilities in renewal processes without replacement which may be of independent interest.Comment: 45 page

    Network of Time-Multiplexed Optical Parametric Oscillators as a Coherent Ising Machine

    Get PDF
    Finding the ground states of the Ising Hamiltonian [1] maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence, and social network. So far no efficient classical and quantum algorithm is known for these problems, and intensive research is focused on creating physical systems - Ising machines - capable of finding the absolute or approximate ground states of the Ising Hamiltonian [2-6]. Here we report a novel Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections [7]. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programed the smallest non-deterministic polynomial time (NP)- hard Ising problem on the machine, and in 1000 runs of the machine no computational error was detected

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201
    corecore