31,565 research outputs found

    A Coding Theoretic Study on MLL proof nets

    Full text link
    Coding theory is very useful for real world applications. A notable example is digital television. Basically, coding theory is to study a way of detecting and/or correcting data that may be true or false. Moreover coding theory is an area of mathematics, in which there is an interplay between many branches of mathematics, e.g., abstract algebra, combinatorics, discrete geometry, information theory, etc. In this paper we propose a novel approach for analyzing proof nets of Multiplicative Linear Logic (MLL) by coding theory. We define families of proof structures and introduce a metric space for each family. In each family, 1. an MLL proof net is a true code element; 2. a proof structure that is not an MLL proof net is a false (or corrupted) code element. The definition of our metrics reflects the duality of the multiplicative connectives elegantly. In this paper we show that in the framework one error-detecting is possible but one error-correcting not. Our proof of the impossibility of one error-correcting is interesting in the sense that a proof theoretical property is proved using a graph theoretical argument. In addition, we show that affine logic and MLL + MIX are not appropriate for this framework. That explains why MLL is better than such similar logics.Comment: minor modification

    Model predictive control of timed continuous petri nets

    Get PDF
    This thesis addresses the optimal control problem of timed continuous Petri nets. The theory of Model Predictive Control (MPC) is first discussed. Then continuous Petri nets (PN) are introduced as a powerful tool for modelling, simulation and analysis of discrete event/continuous systems. Their useful capabilities are studied. Finally, a macroscopic model based on PN as a tool for designing control laws that improve the behavior of traffic systems is given. The goal is to find an approach that minimizes the total delay of cars in an intersection by computing the switching sequence of the traffic lights. The simulation results show that by using an MPC strategy to handle the variability of traffic conditions, the total delay is dramatically reduced

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation

    From Proof Nets to the Free *-Autonomous Category

    Get PDF
    In the first part of this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form of graph rewriting. We show the standard results of sequentialization and strong normalization of cut elimination. In the second part of the paper we show that the identifications enforced on proofs are such that the class of two-conclusion proof nets defines the free *-autonomous category.Comment: LaTeX, 44 pages, final version for LMCS; v2: updated bibliograph

    Proof equivalence in MLL is PSPACE-complete

    Full text link
    MLL proof equivalence is the problem of deciding whether two proofs in multiplicative linear logic are related by a series of inference permutations. It is also known as the word problem for star-autonomous categories. Previous work has shown the problem to be equivalent to a rewiring problem on proof nets, which are not canonical for full MLL due to the presence of the two units. Drawing from recent work on reconfiguration problems, in this paper it is shown that MLL proof equivalence is PSPACE-complete, using a reduction from Nondeterministic Constraint Logic. An important consequence of the result is that the existence of a satisfactory notion of proof nets for MLL with units is ruled out (under current complexity assumptions). The PSPACE-hardness result extends to equivalence of normal forms in MELL without units, where the weakening rule for the exponentials induces a similar rewiring problem.Comment: Journal version of: Willem Heijltjes and Robin Houston. No proof nets for MLL with units: Proof equivalence in MLL is PSPACE-complete. In Proc. Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science, 201

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    Flocking with Obstacle Avoidance

    Get PDF
    In this paper, we provide a dynamic graph theoretical framework for flocking in presence of multiple obstacles. In particular, we give formal definitions of nets and flocks as spatially induced graphs. We provide models of nets and flocks and discuss the realization/embedding issues related to structural nets and flocks. This allows task representation and execution for a network of agents called alpha-agents. We also consider flocking in the presence of multiple obstacles. This task is achieved by introducing two other types of agents called beta-agents and gamma-agents. This framework enables us to address split/rejoin and squeezing maneuvers for nets/flocks of dynamic agents that communicate with each other. The problems arising from switching topology of these networks of mobile agents make the analysis and design of the decision-making protocols for such networks rather challenging. We provide simulation results that demonstrate the effectiveness of our theoretical and computational tools
    corecore