975 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Automation Process for Morphometric Analysis of Volumetric CT Data from Pulmonary Vasculature in Rats

    Get PDF
    With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Unsupervised Superpixel Generation using Edge-Sparse Embedding

    Full text link
    Partitioning an image into superpixels based on the similarity of pixels with respect to features such as colour or spatial location can significantly reduce data complexity and improve subsequent image processing tasks. Initial algorithms for unsupervised superpixel generation solely relied on local cues without prioritizing significant edges over arbitrary ones. On the other hand, more recent methods based on unsupervised deep learning either fail to properly address the trade-off between superpixel edge adherence and compactness or lack control over the generated number of superpixels. By using random images with strong spatial correlation as input, \ie, blurred noise images, in a non-convolutional image decoder we can reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image. We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels. Our proposed method reaches state-of-the-art performance on the BSDS500, PASCAL-Context and a microscopy dataset

    A Sketch-Based Interface for Annotation of 3D Brain Vascular Reconstructions

    Get PDF
    Within the medical imaging community, 3D models of anatomical structures are now widely used in order to establish more accurate diagnoses than those based on 2D images. Many research works focus on an automatic process to build such 3D models. However automatic reconstruction induces many artifacts if the anatomical structure exhibits tortuous and thin parts (such as vascular networks) and the correction of these artifacts involves 3D-modeling skills and times that radiologists do not have. This article presents a semi-automatic approach to build a correct topology of vascular networks from 3D medical images. The user interface is based on sketching; user strokes both defines a command and the part of geometry where the command is applied to. Moreover the user-gesture speed is taken into account to adjust the command: a slow and precise gesture will correct a local part of the topology while a fast gesture will correct a larger part of the topology. Our system relies on an automatic segmentation that provides a initial guess that the user can interactively modify using the proposed set of commands. This allows to correct the anatomical aberrations or ambiguities that appear on the segmented model in a few strokes.Dans le domaine de l'imagerie médicale, la modélisation 3D de structures anatomiques est maintenant largement utilisée dans l'optique d'é}tablir des diagnostics plus précis qu'avec des données basées sur des images 2D. Aujourd'hui, de nombreux travaux mettent l'accent sur les méthodes automatique de reconstruction de modèles 3D mais ces méthodes induisent de nombreuses erreurs. Avec une structure anatomique (réseau cérébral) présente des parties assez fines et tortueuses, des erreurs sont introduites, cela nécessitent de la correction du modèle 3D, mais aussi des compétences et des heures que les radiologistes ne possèdent pas. Cet article présente une approche semi-automatique de reconstruction d'une topologie correcte de réseaux vasculaires issus d'images médicales en 3D. Notre système repose sur une segmentation automatique qui fournit une estimation initiale dont l'utilisateur peut modifier interactivement en utilisant un jeu proposé de commandes basées sur le croquis. Cela permet de corriger les aberrations anatomiques ou les ambiguïtés qui apparaissent sur le modèle segmenté en quelques traits

    Reconstructing the Hemodynamic Response Function via a Bimodal Transformer

    Full text link
    The relationship between blood flow and neuronal activity is widely recognized, with blood flow frequently serving as a surrogate for neuronal activity in fMRI studies. At the microscopic level, neuronal activity has been shown to influence blood flow in nearby blood vessels. This study introduces the first predictive model that addresses this issue directly at the explicit neuronal population level. Using in vivo recordings in awake mice, we employ a novel spatiotemporal bimodal transformer architecture to infer current blood flow based on both historical blood flow and ongoing spontaneous neuronal activity. Our findings indicate that incorporating neuronal activity significantly enhances the model's ability to predict blood flow values. Through analysis of the model's behavior, we propose hypotheses regarding the largely unexplored nature of the hemodynamic response to neuronal activity

    Review on the methods of automatic liver segmentation from abdominal images

    Get PDF
    Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation.We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed to-gether to achieve better segmentation performance
    • …
    corecore