1,015 research outputs found

    Boolean Circuit Complexity of Regular Languages

    Full text link
    In this paper we define a new descriptional complexity measure for Deterministic Finite Automata, BC-complexity, as an alternative to the state complexity. We prove that for two DFAs with the same number of states BC-complexity can differ exponentially. In some cases minimization of DFA can lead to an exponential increase in BC-complexity, on the other hand BC-complexity of DFAs with a large state space which are obtained by some standard constructions (determinization of NFA, language operations), is reasonably small. But our main result is the analogue of the "Shannon effect" for finite automata: almost all DFAs with a fixed number of states have BC-complexity that is close to the maximum.Comment: In Proceedings AFL 2014, arXiv:1405.527

    State Complexity of Reversals of Deterministic Finite Automata with Output

    Full text link
    We investigate the worst-case state complexity of reversals of deterministic finite automata with output (DFAOs). In these automata, each state is assigned some output value, rather than simply being labelled final or non-final. This directly generalizes the well-studied problem of determining the worst-case state complexity of reversals of ordinary deterministic finite automata. If a DFAO has nn states and kk possible output values, there is a known upper bound of knk^n for the state complexity of reversal. We show this bound can be reached with a ternary input alphabet. We conjecture it cannot be reached with a binary input alphabet except when k=2k = 2, and give a lower bound for the case 3≤k<n3 \le k < n. We prove that the state complexity of reversal depends solely on the transition monoid of the DFAO and the mapping that assigns output values to states.Comment: 18 pages, 3 tables. Added missing affiliation/funding informatio

    Learning Moore Machines from Input-Output Traces

    Full text link
    The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in automata learning theory and practice. In this paper we study this problem for finite state machines with inputs and outputs, and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which transforms a set of input-output traces into an incomplete Moore machine and then completes the machine with self-loops; (2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata encoding a Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore machine using PTAP extended with state merging. We prove that MooreMI has the fundamental identification in the limit property. We also compare the algorithms experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. Finally, we compare with OSTIA, an algorithm that learns a more general class of transducers, and find that OSTIA generally does not learn a Moore machine, even when fed with a characteristic sample

    On random primitive sets, directable NDFAs and the generation of slowly synchronizing DFAs

    Full text link
    We tackle the problem of the randomized generation of slowly synchronizing deterministic automata (DFAs) by generating random primitive sets of matrices. We show that when the randomized procedure is too simple the exponent of the generated sets is O(n log n) with high probability, thus the procedure fails to return DFAs with large reset threshold. We extend this result to random nondeterministic automata (NDFAs) by showing, in particular, that a uniformly sampled NDFA has both a 2-directing word and a 3-directing word of length O(n log n) with high probability. We then present a more involved randomized algorithm that manages to generate DFAs with large reset threshold and we finally leverage this finding for exhibiting new families of DFAs with reset threshold of order Ω(n2/4) \Omega(n^2/4) .Comment: 31 pages, 9 figures. arXiv admin note: text overlap with arXiv:1805.0672

    Testing the Equivalence of Regular Languages

    Full text link
    The minimal deterministic finite automaton is generally used to determine regular languages equality. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimisation. In this paper we improve the best-case running time, present an extension of this algorithm to non-deterministic finite automata, and establish a relationship between this algorithm and the one proposed in Almeida et al. We also present some experimental comparative results. All these algorithms are closely related with the recent coalgebraic approach to automata proposed by Rutten
    • …
    corecore