152 research outputs found

    On the Core of a Unicyclic Graph

    Full text link
    A set S is independent in a graph G if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number alpha(G) is the cardinality of a maximum independent set, while mu(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a unicyclic graph of order n and n-1 = alpha(G) + mu(G), then core(G) coincides with the union of cores of all trees in G-C.Comment: 8 pages, 5 figure

    Computing Unique Maximum Matchings in O(m) time for Konig-Egervary Graphs and Unicyclic Graphs

    Full text link
    Let alpha(G) denote the maximum size of an independent set of vertices and mu(G) be the cardinality of a maximum matching in a graph G. A matching saturating all the vertices is perfect. If alpha(G) + mu(G) equals the number of vertices of G, then it is called a Konig-Egervary graph. A graph is unicyclic if it has a unique cycle. In 2010, Bartha conjectured that a unique perfect matching, if it exists, can be found in O(m) time, where m is the number of edges. In this paper we validate this conjecture for Konig-Egervary graphs and unicylic graphs. We propose a variation of Karp-Sipser leaf-removal algorithm (Karp and Spiser, 1981), which ends with an empty graph if and only if the original graph is a Konig-Egervary graph with a unique perfect matching obtained as an output as well. We also show that a unicyclic non-bipartite graph G may have at most one perfect matching, and this is the case where G is a Konig-Egervary graph.Comment: 10 pages, 5 figure

    A Comparison between the Zero Forcing Number and the Strong Metric Dimension of Graphs

    Full text link
    The \emph{zero forcing number}, Z(G)Z(G), of a graph GG is the minimum cardinality of a set SS of black vertices (whereas vertices in V(G)−SV(G)-S are colored white) such that V(G)V(G) is turned black after finitely many applications of "the color-change rule": a white vertex is converted black if it is the only white neighbor of a black vertex. The \emph{strong metric dimension}, sdim(G)sdim(G), of a graph GG is the minimum among cardinalities of all strong resolving sets: W⊆V(G)W \subseteq V(G) is a \emph{strong resolving set} of GG if for any u,v∈V(G)u, v \in V(G), there exists an x∈Wx \in W such that either uu lies on an x−vx-v geodesic or vv lies on an x−ux-u geodesic. In this paper, we prove that Z(G)≤sdim(G)+3r(G)Z(G) \le sdim(G)+3r(G) for a connected graph GG, where r(G)r(G) is the cycle rank of GG. Further, we prove the sharp bound Z(G)≤sdim(G)Z(G) \leq sdim(G) when GG is a tree or a unicyclic graph, and we characterize trees TT attaining Z(T)=sdim(T)Z(T)=sdim(T). It is easy to see that sdim(T+e)−sdim(T)sdim(T+e)-sdim(T) can be arbitrarily large for a tree TT; we prove that sdim(T+e)≥sdim(T)−2sdim(T+e) \ge sdim(T)-2 and show that the bound is sharp.Comment: 8 pages, 5 figure
    • …
    corecore