8,436 research outputs found

    An atmospheric correction algorithm for FY3/MERSI data over land in China

    Get PDF
    Feng-Yun (FY-3) is the second generation of the Chinese Polar Orbiting Meteorological Satellites with global, three-dimensional, quantitative, and multispectral capabilities. Medium Resolution Spectral Imager (MERSI) has 20 channels onboard the FY-3A and FY-3B satellites, including five channels (four VIS and one thermal IR) with a spatial resolution of 250m. The top of the atmosphere signal are necessary to be radiometrically calibrated and corrected for atmospheric effects based on surface reflectance, especially in land surface remote sensing and applications. This paper presents an atmospheric correction algorithm for FY3/MERSI data over land in China, taking into account the directional properties of the observed surface by a kernel-based Bi-directional Reflectance Distribution Function (BRDF) model. The comparison with MODGA and ASD reflectance showed that there is a good agreement. Therefore, FY3/MERSI can serve a reliable and new data source for quantifying global environment change

    BRDF of Salt Pan Regolith Samples

    Get PDF
    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported

    Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: theoretical basis

    Full text link
    This paper presents the theoretical basis of the algorithm designed for the generation of leaf area index and diurnal course of its sunlit portion from NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR). The Look-up-Table (LUT) approach implemented in the MODIS operational LAI/FPAR algorithm is adopted. The LUT, which is the heart of the approach, has been significantly modified. First, its parameterization incorporates the canopy hot spot phenomenon and recent advances in the theory of canopy spectral invariants. This allows more accurate decoupling of the structural and radiometric components of the measured Bidirectional Reflectance Factor (BRF), improves scaling properties of the LUT and consequently simplifies adjustments of the algorithm for data spatial resolution and spectral band compositions. Second, the stochastic radiative transfer equations are used to generate the LUT for all biome types. The equations naturally account for radiative effects of the three-dimensional canopy structure on the BRF and allow for an accurate discrimination between sunlit and shaded leaf areas. Third, the LUT entries are measurable, i.e., they can be independently derived from both below canopy measurements of the transmitted and above canopy measurements of reflected radiation fields. This feature makes possible direct validation of the LUT, facilitates identification of its deficiencies and development of refinements. Analyses of field data on canopy structure and leaf optics collected at 18 sites in the Hyytiälä forest in southern boreal zone in Finland and hyperspectral images acquired by the EO-1 Hyperion sensor support the theoretical basis.Shared Services Center NAS

    A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV

    Full text link
    A new physically based method to estimate hemispheric-directional reflectance factor (HDRF) from lightweight multispectral cameras that have a downwelling irradiance sensor is presented. It combines radiometry with photogrammetric computer vision to derive geometrically and radiometrically accurate data purely from the images, without requiring reflectance targets or any other additional information apart from the imagery. The sky sensor orientation is initially computed using photogrammetric computer vision and revised with a non-linear regression comprising radiometric and photogrammetry-derived information. It works for both clear sky and overcast conditions. A ground-based test acquisition of a Spectralon target observed from different viewing directions and with different sun positions using a typical multispectral sensor configuration for clear sky and overcast showed that both the overall value and the directionality of the reflectance factor as reported in the literature were well retrieved. An RMSE of 3% for clear sky and up to 5% for overcast sky was observed

    Theoretical Study of Radiant Heat Exchange for Non-gray Non-diffuse Surfaces in a Space Environment Semiannual Status Report No. 2, Aug. 1965 - Feb. 1966

    Get PDF
    Bi-directional reflectance models for describing distribution of reflected energy from rough metallic spacecraft surface

    Contribution of leaf specular reflection to canopy reflectance under black soil case using stochastic radiative transfer model

    Full text link
    Numerous canopy radiative transfer models have been proposed based on the assumption of “ideal bi-Lambertian leaves” with the aim of simplifying the interactions between photons and vegetation canopies. This assumption may cause discrepancy between the simulated and measured canopy bidirectional reflectance factor (BRF). Few studies have been devoted to evaluate the impacts of such assumption on simulation of canopy BRF at a high-to-medium spatial resolution (∼30 m). This paper focuses on quantifying the contribution of leaf specular reflection on the estimation of canopy BRF under a black soil case using one of the most efficient radiative transfer models, the stochastic radiative transfer model. Analyses of field and satellite data collected over the boreal Hyytiälä forest in Finland show that leaf specular reflection may lead to errors of up to 33.1% at 550 nm and 32.8% at 650 nm in terms of relative root mean square error. The results suggest that, in order to minimize these errors, leaf specular reflection should be accounted for in modeling BRF.This research was supported by the Fundamental Research Funds for the Central Universities under Grant No. 531107051063 and Guangxi Natural Science Foundation under Grant No. 2016JJD110017. We would like to thank Dr. Rautiainen Miina and Mottus Matti for sharing the field data and the USGS for making the EO-1 Hyperion hyperspectral data publically available. (531107051063 - Fundamental Research Funds for the Central Universities; 2016JJD110017 - Guangxi Natural Science Foundation)Accepted manuscrip

    Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data

    Get PDF
    Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling
    corecore