3,933 research outputs found

    Merging the A- and Q-spectral theories

    Full text link
    Let GG be a graph with adjacency matrix A(G)A\left( G\right) , and let D(G)D\left( G\right) be the diagonal matrix of the degrees of G.G. The signless Laplacian Q(G)Q\left( G\right) of GG is defined as Q(G):=A(G)+D(G)Q\left( G\right) :=A\left( G\right) +D\left( G\right) . Cvetkovi\'{c} called the study of the adjacency matrix the AA% \textit{-spectral theory}, and the study of the signless Laplacian--the QQ\textit{-spectral theory}. During the years many similarities and differences between these two theories have been established. To track the gradual change of A(G)A\left( G\right) into Q(G)Q\left( G\right) in this paper it is suggested to study the convex linear combinations Aα(G)A_{\alpha }\left( G\right) of A(G)A\left( G\right) and D(G)D\left( G\right) defined by Aα(G):=αD(G)+(1α)A(G),   0α1. A_{\alpha}\left( G\right) :=\alpha D\left( G\right) +\left( 1-\alpha\right) A\left( G\right) \text{, \ \ }0\leq\alpha\leq1. This study sheds new light on A(G)A\left( G\right) and Q(G)Q\left( G\right) , and yields some surprises, in particular, a novel spectral Tur\'{a}n theorem. A number of challenging open problems are discussed.Comment: 26 page

    Eigenvalues and forbidden subgraphs I

    Full text link
    We present sharp inequalities relating the number of vertices, edges, and triangles of a graph to the smallest eigenvalue of its adjacency matrix and the largest eigenvalue of its Laplacian.Comment: Some calculation errors in the first version are correcte

    On the Fiedler value of large planar graphs

    Get PDF
    The Fiedler value λ2\lambda_2, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs GG with nn vertices, denoted by λ2max\lambda_{2\max}, and we show the bounds 2+Θ(1n2)λ2max2+O(1n)2+\Theta(\frac{1}{n^2}) \leq \lambda_{2\max} \leq 2+O(\frac{1}{n}). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex degree~3, and outerplanar graphs. Furthermore, we derive almost tight bounds on λ2max\lambda_{2\max} for two more classes of graphs, those of bounded genus and KhK_h-minor-free graphs.Comment: 21 pages, 4 figures, 1 table. Version accepted in Linear Algebra and Its Application
    corecore