12,074 research outputs found

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Technology diffusion in communication networks

    Full text link
    The deployment of new technologies in the Internet is notoriously difficult, as evidence by the myriad of well-developed networking technologies that still have not seen widespread adoption (e.g., secure routing, IPv6, etc.) A key hurdle is the fact that the Internet lacks a centralized authority that can mandate the deployment of a new technology. Instead, the Internet consists of thousands of nodes, each controlled by an autonomous, profit-seeking firm, that will deploy a new networking technology only if it obtains sufficient local utility by doing so. For the technologies we study here, local utility depends on the set of nodes that can be reached by traversing paths consisting only of nodes that have already deployed the new technology. To understand technology diffusion in the Internet, we propose a new model inspired by work on the spread of influence in social networks. Unlike traditional models, where a node's utility depends only its immediate neighbors, in our model, a node can be influenced by the actions of remote nodes. Specifically, we assume node v activates (i.e. deploys the new technology) when it is adjacent to a sufficiently large connected component in the subgraph induced by the set of active nodes; namely, of size exceeding node v's threshold value \theta(v). We are interested in the problem of choosing the right seedset of nodes to activate initially, so that the rest of the nodes in the network have sufficient local utility to follow suit. We take the graph and thresholds values as input to our problem. We show that our problem is both NP-hard and does not admit an (1-o(1) ln|V| approximation on general graphs. Then, we restrict our study to technology diffusion problems where (a) maximum distance between any pair of nodes in the graph is r, and (b) there are at most \ell possible threshold values. Our set of restrictions is quite natural, given that (a) the Internet graph has constant diameter, and (b) the fact that limiting the granularity of the threshold values makes sense given the difficulty in obtaining empirical data that parameterizes deployment costs and benefits. We present algorithm that obtains a solution with guaranteed approximation rate of O(r^2 \ell \log|V|) which is asymptotically optimal, given our hardness results. Our approximation algorithm is a linear-programming relaxation of an 0-1 integer program along with a novel randomized rounding scheme.National Science Foundation (S-1017907, CCF-0915922

    Ultrafast Consensus in Small-World Networks

    Get PDF
    In this paper, we demonstrate a phase transition phenomenon in algebraic connectivity of small-world networks. Algebraic connectivity of a graph is the second smallest eigenvalue of its Laplacian matrix and a measure of speed of solving consensus problems in networks. We demonstrate that it is possible to dramatically increase the algebraic connectivity of a regular complex network by 1000 times or more without adding new links or nodes to the network. This implies that a consensus problem can be solved incredibly fast on certain small-world networks giving rise to a network design algorithm for ultra fast information networks. Our study relies on a procedure called "random rewiring" due to Watts & Strogatz (Nature, 1998). Extensive numerical results are provided to support our claims and conjectures. We prove that the mean of the bulk Laplacian spectrum of a complex network remains invariant under random rewiring. The same property only asymptotically holds for scale-free networks. A relationship between increasing the algebraic connectivity of complex networks and robustness to link and node failures is also shown. This is an alternative approach to the use of percolation theory for analysis of network robustness. We also show some connections between our conjectures and certain open problems in the theory of random matrices

    Next nearest neighbour Ising models on random graphs

    Full text link
    This paper develops results for the next nearest neighbour Ising model on random graphs. Besides being an essential ingredient in classic models for frustrated systems, second neighbour interactions interactions arise naturally in several applications such as the colour diversity problem and graphical games. We demonstrate ensembles of random graphs, including regular connectivity graphs, that have a periodic variation of free energy, with either the ratio of nearest to next nearest couplings, or the mean number of nearest neighbours. When the coupling ratio is integer paramagnetic phases can be found at zero temperature. This is shown to be related to the locked or unlocked nature of the interactions. For anti-ferromagnetic couplings, spin glass phases are demonstrated at low temperature. The interaction structure is formulated as a factor graph, the solution on a tree is developed. The replica symmetric and energetic one-step replica symmetry breaking solution is developed using the cavity method. We calculate within these frameworks the phase diagram and demonstrate the existence of dynamical transitions at zero temperature for cases of anti-ferromagnetic coupling on regular and inhomogeneous random graphs.Comment: 55 pages, 15 figures, version 2 with minor revisions, to be published J. Stat. Mec

    Hierarchical characterization of complex networks

    Full text link
    While the majority of approaches to the characterization of complex networks has relied on measurements considering only the immediate neighborhood of each network node, valuable information about the network topological properties can be obtained by considering further neighborhoods. The current work discusses on how the concepts of hierarchical node degree and hierarchical clustering coefficient (introduced in cond-mat/0408076), complemented by new hierarchical measurements, can be used in order to obtain a powerful set of topological features of complex networks. The interpretation of such measurements is discussed, including an analytical study of the hierarchical node degree for random networks, and the potential of the suggested measurements for the characterization of complex networks is illustrated with respect to simulations of random, scale-free and regular network models as well as real data (airports, proteins and word associations). The enhanced characterization of the connectivity provided by the set of hierarchical measurements also allows the use of agglomerative clustering methods in order to obtain taxonomies of relationships between nodes in a network, a possibility which is also illustrated in the current article.Comment: 19 pages, 23 figure

    Spatially embedded random networks

    No full text
    Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to network structure disregarded. In this paper we introduce a model framework to analyze the mediation of network structure by spatial embedding; specifically, we model connectivity as dependent on the distance between network nodes. Our spatially embedded random networks construction is not primarily intended as an accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale free degree distributions and the existence of small-world spatial networks. We also derive some standard structural statistics for spatially embedded networks and illustrate the application of our model framework with concrete examples

    Directionality of contact networks suppresses selection pressure in evolutionary dynamics

    Get PDF
    Individuals of different types, may it be genetic, cultural, or else, with different levels of fitness often compete for reproduction and survival. A fitter type generally has higher chances of disseminating their copies to other individuals. The fixation probability of a single mutant type introduced in a population of wild-type individuals quantifies how likely the mutant type spreads. How much the excess fitness of the mutant type increases its fixation probability, namely, the selection pressure, is important in assessing the impact of the introduced mutant. Previous studies mostly based on undirected and unweighted contact networks of individuals showed that the selection pressure depends on the structure of networks and the rule of reproduction. Real networks underlying ecological and social interactions are usually directed or weighted. Here we examine how the selection pressure is modulated by directionality of interactions under several update rules. Our conclusions are twofold. First, directionality discounts the selection pressure for different networks and update rules. Second, given a network, the update rules in which death events precede reproduction events significantly decrease the selection pressure than the other rules.Comment: 7 figures, 2 table
    corecore