2,270 research outputs found

    The Stochastic Shortest Path Problem : A polyhedral combinatorics perspective

    Full text link
    In this paper, we give a new framework for the stochastic shortest path problem in finite state and action spaces. Our framework generalizes both the frameworks proposed by Bertsekas and Tsitsikli and by Bertsekas and Yu. We prove that the problem is well-defined and (weakly) polynomial when (i) there is a way to reach the target state from any initial state and (ii) there is no transition cycle of negative costs (a generalization of negative cost cycles). These assumptions generalize the standard assumptions for the deterministic shortest path problem and our framework encapsulates the latter problem (in contrast with prior works). In this new setting, we can show that (a) one can restrict to deterministic and stationary policies, (b) the problem is still (weakly) polynomial through linear programming, (c) Value Iteration and Policy Iteration converge, and (d) we can extend Dijkstra's algorithm

    Efficient computation of exact solutions for quantitative model checking

    Get PDF
    Quantitative model checkers for Markov Decision Processes typically use finite-precision arithmetic. If all the coefficients in the process are rational numbers, then the model checking results are rational, and so they can be computed exactly. However, exact techniques are generally too expensive or limited in scalability. In this paper we propose a method for obtaining exact results starting from an approximated solution in finite-precision arithmetic. The input of the method is a description of a scheduler, which can be obtained by a model checker using finite precision. Given a scheduler, we show how to obtain a corresponding basis in a linear-programming problem, in such a way that the basis is optimal whenever the scheduler attains the worst-case probability. This correspondence is already known for discounted MDPs, we show how to apply it in the undiscounted case provided that some preprocessing is done. Using the correspondence, the linear-programming problem can be solved in exact arithmetic starting from the basis obtained. As a consequence, the method finds the worst-case probability even if the scheduler provided by the model checker was not optimal. In our experiments, the calculation of exact solutions from a candidate scheduler is significantly faster than the calculation using the simplex method under exact arithmetic starting from a default basis.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
    corecore