3 research outputs found

    Jacobian Free Methods for Coupling Transport with Chemistry in Heterogenous Porous Media

    Get PDF
    International audienceReactive transport plays an important role in various subsurface applications, including carbon dioxide sequestration, nuclear waste storage, biogeochemistry and the simulation of hydro-thermal reservoirs. The model couples a set of partial differential equations, describing the transport of chemical species, to nonlinear algebraic or differential equations, describing the chemical reactions. Solution methods for the resulting large nonlinear system can be either fully coupled or can iterate between transport and chemistry. This paper extends previous work by the authors where an approach based on the Newton-Krylov method applied to a reduced system has been developed. The main feature of the approach is to solve the nonlinear system in a fully coupled manner while keeping transport and chemistry modules separate. Here we extend the method in two directions. First, we take into account mineral precipitation and dissolution reactions by using an interior point Newton method, so as to avoid the usual combinatorial approach. Second, we study two-dimensional heterogeneous geometries. We show how the method can make use of an existing transport solver, used as a black box. We detail the methods and algorithms for the individual modules, and for the coupling step. We show the performance of the method on synthetic examples

    Algorithmes de Newton-min polyédriques pour les problèmes de complémentarité

    Get PDF
    The semismooth Newton method is a very efficient approach for computing a zero of a large class of nonsmooth equations. When the initial iterate is sufficiently close to a regular zero and the function is strongly semismooth, the generated sequence converges quadratically to that zero, while the iteration only requires to solve a linear system.If the first iterate is far away from a zero, however, it is difficult to force its convergence using linesearch or trust regions because a semismooth Newton direction may not be a descent direction of the associated least-square merit function, unlike when the function is differentiable. We explore this question in the particular case of a nonsmooth equation reformulation of the nonlinear complementarity problem, using the minimum function. We propose a globally convergent algorithm using a modification of a semismooth Newton direction that makes it a descent direction of the least-square function. Instead of requiring that the direction satisfies a linear system, it must be a feasible point of a convex polyhedron; hence, it can be computed in polynomial time. This polyhedron is defined by the often very few inequalities, obtained by linearizing pairs of functions that have close negative values at the current iterate; hence, somehow, the algorithm feels the proximity of a "bad kink" of the minimum function and acts accordingly.In order to avoid as often as possible the extra cost of having to find a feasible point of a polyhedron, a hybrid algorithm is also proposed, in which the Newton-min direction is accepted if a sufficient-descent-like criterion is satisfied, which is often the case in practice. Global convergence to regular points is proved; the notion of regularity is associated with the algorithm and is analysed with care.L'algorithme de Newton semi-lisse est très efficace pour calculer un zéro d'une large classe d'équations non lisses. Lorsque le premier itéré est suffisamment proche d'un zéro régulier et si la fonction est fortement semi-lisse, la suite générée converge quadratiquement vers ce zéro, alors que l'itération ne requière que la résolution d'un système linéaire.Cependant, si le premier itéré est éloigné d'un zéro, il est difficile de forcer sa convergence par recherche linéaire ou régions de confiance, parce que la direction de Newton semi-lisse n'est pas nécessairement une direction de descente de la fonction de moindres-carrés associée, contrairement au cas où la fonction à annuler est différentiable. Nous explorons cette question dans le cas particulier d'une reformulation par équation non lisse du problème de complémentarité non linéaire, en utilisant la fonction minimum. Nous proposons un algorithme globalement convergent, utilisant une direction de Newton semi-lisse modifiée, qui est de descente pour la fonction de moindres-carrés. Au lieu de requérir la satisfaction d'un système linéaire, cette direction doit être intérieur à un polyèdre convexe, ce qui peut se calculer en temps polynomial. Ce polyèdre est défini par souvent très peu d'inégalités, obtenus en linéarisant des couples de fonctions qui ont des valeurs négatives proches à l'itéré courant; donc, d'une certaine manière, l'algorithme est capable d'estimer la proximité des "mauvais plis" de la fonction minimum et d'agir en conséquence.De manière à éviter au si souvent que possible le coût supplémentaire lié au calcul d'un point admissible de polyèdre, un algorithme hybride est également proposé, dans lequel la direction de Newton-min est acceptée si un critère de décroissance suffisante est vérifié, ce qui est souvent le cas en pratique. La convergence globale vers des points régulier est démontrée; la notion de régularité est associée à l'algorithme et est analysée avec soin
    corecore