61,225 research outputs found

    Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representation Projection

    Full text link
    The state-of-the-art named entity recognition (NER) systems are supervised machine learning models that require large amounts of manually annotated data to achieve high accuracy. However, annotating NER data by human is expensive and time-consuming, and can be quite difficult for a new language. In this paper, we present two weakly supervised approaches for cross-lingual NER with no human annotation in a target language. The first approach is to create automatically labeled NER data for a target language via annotation projection on comparable corpora, where we develop a heuristic scheme that effectively selects good-quality projection-labeled data from noisy data. The second approach is to project distributed representations of words (word embeddings) from a target language to a source language, so that the source-language NER system can be applied to the target language without re-training. We also design two co-decoding schemes that effectively combine the outputs of the two projection-based approaches. We evaluate the performance of the proposed approaches on both in-house and open NER data for several target languages. The results show that the combined systems outperform three other weakly supervised approaches on the CoNLL data.Comment: 11 pages, The 55th Annual Meeting of the Association for Computational Linguistics (ACL), 201

    Hierarchical adaptive polynomial chaos expansions

    Full text link
    Polynomial chaos expansions (PCE) are widely used in the framework of uncertainty quantification. However, when dealing with high dimensional complex problems, challenging issues need to be faced. For instance, high-order polynomials may be required, which leads to a large polynomial basis whereas usually only a few of the basis functions are in fact significant. Taking into account the sparse structure of the model, advanced techniques such as sparse PCE (SPCE), have been recently proposed to alleviate the computational issue. In this paper, we propose a novel approach to SPCE, which allows one to exploit the model's hierarchical structure. The proposed approach is based on the adaptive enrichment of the polynomial basis using the so-called principle of heredity. As a result, one can reduce the computational burden related to a large pre-defined candidate set while obtaining higher accuracy with the same computational budget

    Bifurcations and synchronization using an integrated programmable chaotic circuit

    Get PDF
    This paper presents a CMOS chip which can act as an autonomous stand-alone unit to generate different real-time chaotic behaviors by changing a few external bias currents. In particular, by changing one of these bias currents, the chip provides different examples of a period-doubling route to chaos. We present experimental orbits and attractors, time waveforms and power spectra measured from the chip. By using two chip units, experiments on synchronization can be carried out as well in real-time. Measurements are presented for the following synchronization schemes: linear coupling, drive-response and inverse system. Experimental statistical characterizations associated to these schemes are also presented. We also outline the possible use of the chip for chaotic encryption of audio signals. Finally, for completeness, the paper includes also a brief description of the chip design procedure and its internal circuitry

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers
    corecore