2 research outputs found

    Estrazione non invasiva del segnale elettrocardiografico fetale da registrazioni con elettrodi posti sull’addome della gestante (Non-invasive extraction of the fetal electrocardiogram from abdominal recordings by positioning electrodes on the pregnant woman’s abdomen)

    Get PDF
    openIl cuore è il primo organo che si sviluppa nel feto, particolarmente nelle primissime settimane di gestazione. Rispetto al cuore adulto, quello fetale ha una fisiologia ed un’anatomia significativamente differenti, a causa della differente circolazione cardiovascolare. Il benessere fetale si valuta monitorando l’attività cardiaca mediante elettrocardiografia fetale (ECGf). L’ECGf invasivo (acquisito posizionando elettrodi allo scalpo fetale) è considerato il gold standard, ma l’invasività che lo caratterizza ne limita la sua applicabilità. Al contrario, l’uso clinico dell’ECGf non invasivo (acquisito posizionando elettrodi sull’addome della gestante) è limitato dalla scarsa qualità del segnale risultante. L’ECGf non invasivo si estrae da registrazioni addominali, che sono corrotte da differenti tipi di rumore, fra i quali l’interferenza primaria è rappresentata dall’ECG materno. Il Segmented-Beat Modulation Method (SBMM) è stato da me recentemente proposto come una nuova procedura di filtraggio basata sul calcolo del template del battito cardiaco. SBMM fornisce una stima ripulita dell’ECG estratto da registrazioni rumorose, preservando la fisiologica variabilità ECG del segnale originale. Questa caratteristica è ottenuta grazie alla segmentazione di ogni battito cardiaco per indentificare i segmenti QRS e TUP, seguito dal processo di modulazione/demodulazione (che include strecciamento e compressione) del segmento TUP, per aggiustarlo in modo adattativo alla morfologia e alla durata di ogni battito originario. Dapprima applicato all’ECG adulto al fine di dimostrare la sua robustezza al rumore, l’SBMM è stato poi applicato al caso fetale. Particolarmente significativi sono i risultati relativi alle applicazioni su ECGf non invasivo, dove l’SBMM fornisce segnali caratterizzati da un rapporto segnale-rumore comparabile a quello caratterizzante l’ECGf invasivo. Tuttavia, l’SBMM può contribuire alla diffusione dell’ECGf non invasiva nella pratica clinica.The heart is the first organ that develops in the fetus, particularly in the very early stages of pregnancy. Compared to the adult heart, the physiology and anatomy of the fetal heart exhibit some significant differences. These differences originate from the fact that the fetal cardiovascular circulation is different from the adult circulation. Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography (fECG). Invasive fECG (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of non-invasive fECG (acquired through abdominal electrodes) has so far been limited by its poor signal quality. Non-invasive fECG is extracted from the abdominal recording and is corrupted by different kind of noise, among which maternal ECG is the main interference. The Segmented-Beat Modulation Method (SBMM) was recently proposed by myself as a new template-based filtering procedure able to provide a clean ECG estimation from a noisy recording by preserving physiological ECG variability of the original signal. The former feature is achieved thanks to a segmentation procedure applied to each cardiac beat in order to identify the QRS and TUP segments, followed by a modulation/demodulation process (involving stretching and compression) of the TUP segments to adaptively adjust each estimated cardiac beat to the original beat morphology and duration. SBMM was first applied to adult ECG applications, in order to demonstrate its robustness to noise, and then to fECG applications. Particularly significant are the results relative to the non-invasive applications, where SBMM provided fECG signals characterized by a signal-to-noise ratio comparable to that characterizing invasive fECG. Thus, SBMM may contribute to the spread of this noninvasive fECG technique in the clinical practice.INGEGNERIA DELL'INFORMAZIONEAgostinelli, AngelaAgostinelli, Angel

    The segmented-beat modulation method for ECG estimation

    No full text
    Electrocardiographic (ECG) tracings corrupted by noise with frequency components in the ECG frequency band, may result useless unless appropriately processed. The estimation of the clean ECG from such recordings, however, is quite challenging; being linear filtering inappropriate. In the common situations in which the R peaks are detectable, template-based techniques have been proposed to estimate the ECG by a template-beat concatenation. However, such techniques have the major limit of not being able to reproduce physiological heart-rate and morphological variability. Thus, the aim of the present study was to propose the segmented-beat modulation method (SBMM) as the technique that overcomes such limit. The SBMM is an improved template-based technique that provides good-quality estimations of ECG tracings characterized by some heart-rate and morphological variability. It segments the template ECG beat into QRS and TUP segments and then, before concatenation, it applies a modulation/demodulation process to the TUP-segment so that the estimated-beat duration and morphology adjust to those of the corresponding original-beat. To test its performance, the SBMM was applied to 19 ECG tracings from normal subjects. There were no errors in estimating the R peak location, and the errors in the QRS and TUP segments were low (≤65 μV and ≤30 μV, respectively), with the former ones being significantly higher than the latter ones. Eventually, TUP errors tended to increase with increasing heart-rate variability (correlation coefficient:0.59, P<10-2). In conclusion, the new SBMM proved to be a useful tool for providing good-quality ECG estimations of tracings characterized by heart-rate and morphological variability
    corecore