11,094 research outputs found

    INFORMATION THEORETIC SECRET KEY GENERATION: STRUCTURED CODES AND TREE PACKING

    Get PDF
    This dissertation deals with a multiterminal source model for secret key generation by multiple network terminals with prior and privileged access to a set of correlated signals complemented by public discussion among themselves. Emphasis is placed on a characterization of secret key capacity, i.e., the largest rate of an achievable secret key, and on algorithms for key construction. Various information theoretic security requirements of increasing stringency: weak, strong and perfect secrecy, as well as different types of sources: finite-valued and continuous, are studied. Specifically, three different models are investigated. First, we consider strong secrecy generation for a discrete multiterminal source model. We discover a connection between secret key capacity and a new source coding concept of ``minimum information rate for signal dissemination,'' that is of independent interest in multiterminal data compression. Our main contribution is to show for this discrete model that structured linear codes suffice to generate a strong secret key of the best rate. Second, strong secrecy generation is considered for models with continuous observations, in particular jointly Gaussian signals. In the absence of suitable analogs of source coding notions for the previous discrete model, new techniques are required for a characterization of secret key capacity as well as for the design of algorithms for secret key generation. Our proof of the secret key capacity result, in particular the converse proof, as well as our capacity-achieving algorithms for secret key construction based on structured codes and quantization for a model with two terminals, constitute the two main contributions for this second model. Last, we turn our attention to perfect secrecy generation for fixed signal observation lengths as well as for their asymptotic limits. In contrast with the analysis of the previous two models that relies on probabilistic techniques, perfect secret key generation bears the essence of ``zero-error information theory,'' and accordingly, we rely on mathematical techniques of a combinatorial nature. The model under consideration is the ``Pairwise Independent Network'' (PIN) model in which every pair of terminals share a random binary string, with the strings shared by distinct pairs of terminals being mutually independent. This model, which is motivated by practical aspects of a wireless communication network in which terminals communicate on the same frequency, results in three main contributions. First, the concept of perfect omniscience in data compression leads to a single-letter formula for the perfect secret key capacity of the PIN model; moreover, this capacity is shown to be achieved by linear noninteractive public communication, and coincides with strong secret key capacity. Second, taking advantage of a multigraph representation of the PIN model, we put forth an efficient algorithm for perfect secret key generation based on a combinatorial concept of maximal packing of Steiner trees of the multigraph. When all the terminals seek to share perfect secrecy, the algorithm is shown to achieve capacity. When only a subset of terminals wish to share perfect secrecy, the algorithm is shown to achieve at least half of it. Additionally, we obtain nonasymptotic and asymptotic bounds on the size and rate of the best perfect secret key generated by the algorithm. These bounds are of independent interest from a purely graph theoretic viewpoint as they constitute new estimates for the maximum size and rate of Steiner tree packing of a given multigraph. Third, a particular configuration of the PIN model arises when a lone ``helper'' terminal aids all the other ``user'' terminals generate perfect secrecy. This model has special features that enable us to obtain necessary and sufficient conditions for Steiner tree packing to achieve perfect secret key capacity

    Secret-key Agreement with Channel State Information at the Transmitter

    Full text link
    We study the capacity of secret-key agreement over a wiretap channel with state parameters. The transmitter communicates to the legitimate receiver and the eavesdropper over a discrete memoryless wiretap channel with a memoryless state sequence. The transmitter and the legitimate receiver generate a shared secret key, that remains secret from the eavesdropper. No public discussion channel is available. The state sequence is known noncausally to the transmitter. We derive lower and upper bounds on the secret-key capacity. The lower bound involves constructing a common state reconstruction sequence at the legitimate terminals and binning the set of reconstruction sequences to obtain the secret-key. For the special case of Gaussian channels with additive interference (secret-keys from dirty paper channel) our bounds differ by 0.5 bit/symbol and coincide in the high signal-to-noise-ratio and high interference-to-noise-ratio regimes. For the case when the legitimate receiver is also revealed the state sequence, we establish that our lower bound achieves the the secret-key capacity. In addition, for this special case, we also propose another scheme that attains the capacity and requires only causal side information at the transmitter and the receiver.Comment: 10 Pages, Submitted to IEEE Transactions on Information Forensics and Security, Special Issue on Using the Physical Layer for Securing the Next Generation of Communication System

    The Capacity Region of the Source-Type Model for Secret Key and Private Key Generation

    Full text link
    The problem of simultaneously generating a secret key (SK) and private key (PK) pair among three terminals via public discussion is investigated, in which each terminal observes a component of correlated sources. All three terminals are required to generate a common secret key concealed from an eavesdropper that has access to public discussion, while two designated terminals are required to generate an extra private key concealed from both the eavesdropper and the remaining terminal. An outer bound on the SK-PK capacity region was established in [1], and was shown to be achievable for one case. In this paper, achievable schemes are designed to achieve the outer bound for the remaining two cases, and hence the SK-PK capacity region is established in general. The main technique lies in the novel design of a random binning-joint decoding scheme that achieves the existing outer bound.Comment: 20 pages, 4 figure
    • …
    corecore