7 research outputs found

    A Counterexample to the Vector Generalization of Costa's EPI, and Partial Resolution

    Full text link
    We give a counterexample to the vector generalization of Costa's entropy power inequality (EPI) due to Liu, Liu, Poor and Shamai. In particular, the claimed inequality can fail if the matix-valued parameter in the convex combination does not commute with the covariance of the additive Gaussian noise. Conversely, the inequality holds if these two matrices commute.Comment: 3 page

    Optimum Relay Scheme in a Secure Two-Hop Amplify and Forward Cooperative Communication System

    Full text link
    A MIMO secure two-hop wireless communication system is considered in this paper. In this model, there are no direct links between the source-destination and the source-eavesdropper. The problem is maximizing the secrecy capacity of the system over all possible amplify and forward (AF) relay strategies, such that the power consumption at the source node and the relay node is limited. When all the nodes are equipped with single antenna, this non-convex optimization problem is fully characterized. When all the nodes (except the intended receiver) are equipped with multiple antennas, the optimization problem is characterized based on the generalized eigenvalues-eigenvectors of the channel gain matrices

    The Secrecy Capacity Region of the Gaussian MIMO Broadcast Channel

    Full text link
    In this paper, we consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers via a Gaussian MIMO broadcast channel. A wire-tapper also receives the transmitted signal via another MIMO channel. First we assumed that the channels are degraded and the wire-tapper has the worst channel. We establish the capacity region of this scenario. Our achievability scheme is a combination of the superposition of Gaussian codes and randomization within the layers which we will refer to as Secret Superposition Coding. For the outerbound, we use the notion of enhanced channel to show that the secret superposition of Gaussian codes is optimal. We show that we only need to enhance the channels of the legitimate receivers, and the channel of the eavesdropper remains unchanged. Then we extend the result of the degraded case to non-degraded case. We show that the secret superposition of Gaussian codes along with successive decoding cannot work when the channels are not degraded. we develop a Secret Dirty Paper Coding (SDPC) scheme and show that SDPC is optimal for this channel. Finally, we investigate practical characterizations for the specific scenario in which the transmitter and the eavesdropper have multiple antennas, while both intended receivers have a single antenna. We characterize the secrecy capacity region in terms of generalized eigenvalues of the receivers channel and the eavesdropper channel. We refer to this configuration as the MISOME case. In high SNR we show that the capacity region is a convex closure of two rectangular regions.Comment: 23 pages, 2 figure

    Secure Hybrid Digital-Analog Coding With Side Information at the Receiver

    Full text link
    In this work, the problem of transmitting an i.i.d Gaussian source over an i.i.d Gaussian wiretap channel with an i.i.d Gaussian side information available at the intended receiver is considered. The intended receiver is assumed to have a certain minimum SNR and the eavesdropper is assumed to have a strictly lower SNR, compared to the intended receiver. The objective is to minimize the distortion of source reconstruction at the intended receiver. In this work, it is shown that the source-channel separation coding scheme is optimum in the sense of achieving minimum distortion. Two hybrid digital-analog Wyner-Ziv coding schemes are then proposed which achieve the minimum distortion. These secure joint source-channel coding schemes are based on the Wyner-Ziv coding scheme and wiretap channel coding scheme when the analog source is not explicitly quantized. The proposed secure hybrid digital-analog schemes are analyzed under the main channel SNR mismatch. It is proven that the proposed schemes can give a graceful degradation of distortion with SNR under SNR mismatch, i.e., when the actual SNR is larger than the designed SNR

    Secure Joint Source-Channel Coding With Side Information

    Full text link
    In this work, the problem of transmitting an i.i.d Gaussian source over an i.i.d Gaussian wiretap channel with an i.i.d Gaussian side information is considered. The intended receiver is assumed to have a certain minimum SNR and the eavesdropper is assumed to have a strictly lower SNR compared to the intended receiver. The objective is minimizing the distortion of source reconstruction at the intended receiver. In this work, it is shown that unlike the Gaussian wiretap channel without side information, Shannon's source-channel separation coding scheme is not optimum in the sense of achieving the minimum distortion. Three hybrid digital-analog secure joint source channel coding schemes are then proposed which achieve the minimum distortion. The first coding scheme is based on Costa's dirty paper coding scheme and wiretap channel coding scheme when the analog source is not explicitly quantized. The second coding scheme is based on the superposition of the secure digital signal and the hybrid digital-analog signal. It is shown that for the problem of communicating a Gaussian source over a Gaussian wiretap channel with side information, there exists an infinite family of optimum secure joint source-channel coding scheme. In the third coding scheme, the quantized signal and the analog error signal are explicitly superimposed. It is shown that this scheme provides an infinite family of optimum secure joint source-channel channel coding schemes with a variable number of binning. Finally, the proposed secure hybrid digital-analog schemes are analyzed under the main channel SNR mismatch. It is proven that the proposed schemes can give a graceful degradation of distortion with SNR under SNR mismatch, i.e., when the actual SNR is larger than the designed SNR.Comment: 14 Pages, 4 Figure

    On the Secure Degrees-of-Freedom of the Multiple-Access-Channel

    Full text link
    A KK-user secure Gaussian Multiple-Access-Channel (MAC) with an external eavesdropper is considered in this paper. An achievable rate region is established for the secure discrete memoryless MAC. The secrecy sum capacity of the degraded Gaussian MIMO MAC is proven using Gaussian codebooks. For the non-degraded Gaussian MIMO MAC, an algorithm inspired by interference alignment technique is proposed to achieve the largest possible total Secure-Degrees-of-Freedom (S-DoF). When all the terminals are equipped with a single antenna, Gaussian codebooks have shown to be inefficient in providing a positive S-DoF. Instead, a novel secure coding scheme is proposed to achieve a positive S-DoF in the single antenna MAC. This scheme converts the single-antenna system into a multiple-dimension system with fractional dimensions. The achievability scheme is based on the alignment of signals into a small sub-space at the eavesdropper, and the simultaneous separation of the signals at the intended receiver. Tools from the field of Diophantine Approximation in number theory are used to analyze the probability of error in the coding scheme. It is proven that the total S-DoF of Kβˆ’1K\frac{K-1}{K} can be achieved for almost all channel gains. For the other channel gains, a multi-layer coding scheme is proposed to achieve a positive S-DoF. As a function of channel gains, therefore, the achievable S-DoF is discontinued.Comment: The conference version of this work has been submitted to ISIT 201

    The Secrecy Capacity Region of the Degraded Vector Gaussian Broadcast Channel

    No full text
    Abstract β€” In this paper, we consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers via a Gaussian MIMO broadcast channel. A wire-tapper also receives the transmitted signal via another MIMO channel. It is assumed that the channels are degraded and the wire-tapper has the worst channel. We establish the capacity region of this scenario. Our achievability scheme is a combination of the superposition of Gaussian codes and randomization within the layers which we will refer to as Secret Superposition Coding. For the outerbound, we use the notion of enhanced channel to show that the secret superposition of Gaussian codes is optimal. It is shown that we only need to enhance the channels of the legitimate receivers, and the channel of the eavesdropper remains unchanged. I
    corecore