494 research outputs found

    High-efficiency and positivity-preserving stabilized SAV methods for gradient flows

    Full text link
    The scalar auxiliary variable (SAV)-type methods are very popular techniques for solving various nonlinear dissipative systems. Compared to the semi-implicit method, the baseline SAV method can keep a modified energy dissipation law but doubles the computational cost. The general SAV approach does not add additional computation but needs to solve a semi-implicit solution in advance, which may potentially compromise the accuracy and stability. In this paper, we construct a novel first- and second-order unconditional energy stable and positivity-preserving stabilized SAV (PS-SAV) schemes for L2L^2 and H−1H^{-1} gradient flows. The constructed schemes can reduce nearly half computational cost of the baseline SAV method and preserve its accuracy and stability simultaneously. Meanwhile, the introduced auxiliary variable is always positive while the baseline SAV cannot guarantee this positivity-preserving property. Unconditionally energy dissipation laws are derived for the proposed numerical schemes. We also establish a rigorous error analysis of the first-order scheme for the Allen-Cahn type equation in l∞(0,T;H1(Ω))l^{\infty}(0,T; H^1(\Omega) ) norm. In addition we propose an energy optimization technique to optimize the modified energy close to the original energy. Several interesting numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed methods

    A novel high-order linearly implicit and energy-stable additive Runge-Kutta methods for gradient flow models

    Full text link
    This paper introduces a novel paradigm for constructing linearly implicit and high-order unconditionally energy-stable schemes for general gradient flows, utilizing the scalar auxiliary variable (SAV) approach and the additive Runge-Kutta (ARK) methods. We provide a rigorous proof of energy stability, unique solvability, and convergence. The proposed schemes generalizes some recently developed high-order, energy-stable schemes and address their shortcomings. On the one other hand, the proposed schemes can incorporate existing SAV-RK type methods after judiciously selecting the Butcher tables of ARK methods \cite{sav_li,sav_nlsw}. The order of a SAV-RKPC method can thus be confirmed theoretically by the order conditions of the corresponding ARK method. Several new schemes are constructed based on our framework, which perform to be more stable than existing SAV-RK type methods. On the other hand, the proposed schemes do not limit to a specific form of the nonlinear part of the free energy and can achieve high order with fewer intermediate stages compared to the convex splitting ARK methods \cite{csrk}. Numerical experiments demonstrate stability and efficiency of proposed schemes

    Scalar Auxiliary Variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations

    Get PDF
    International audienceIn this paper, based on the Scalar Auxiliary Variable (SAV) approach and a newly proposed Lagrange multiplier (LagM) approach originally constructed for gradient flows, we propose two linear implicit pseudo-spectral schemes for simulating the dynamics of general nonlinear Schrödinger/Gross-Pitaevskii equations. Both schemes are of spectral/second-order accuracy in spatial/temporal direction. The SAV based scheme preserves a modified total energy and approximate the mass to third order (with respect to time steps), while the LagM based scheme could preserve exactly the mass and original total energy. A nonlinear algebraic system has to be solved at every time step for the LagM based scheme, hence the SAV scheme is usually more efficient than the LagM one. On the other hand, the LagM scheme may outperform the SAV ones in the sense that it conserves the original total energy and mass and usually admits smaller errors. Ample numerical results are presented to show the effectiveness, accuracy and performance of the proposed schemes
    • …
    corecore