5,120 research outputs found

    Environmental statistics and optimal regulation

    Get PDF
    Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies-such as constitutive expression or graded response-for regulating protein levels in response to environmental inputs. We propose a general framework-here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient-to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.Comment: 21 pages, 7 figure

    A Tutorial on Learning Human Welder\u27s Behavior: Sensing, Modeling, and Control

    Get PDF
    Human welder\u27s experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder\u27s behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder\u27s intelligence are surveyed, including sensing of the weld pool, modeling of the welder\u27s adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder\u27s intelligence into robotic welding system. Finally future research directions in this field are presented

    Photo-Realistic Scenes with Cast Shadows Show No Above/Below Search Asymmetries for Illumination Direction

    Full text link
    Visual search is extended from the domain of polygonal figures presented on a uniform field to photo-realistic scenes containing target objects in dense, naturalistic backgrounds. The target in a trial is a computer-rendered rock protruding in depth from a "wall" of rocks of roughly similar size but different shapes. Subjects responded "present" when one rock appeared closer than the rest, owing to occlusions or cast shadows, and "absent" when all rocks appeared to be at the same depth. Results showed that cast shadows can significantly decrease reaction times compared to scenes with no cast shadows, in which the target was revealed only by occlusions of rocks behind it. A control experiment showed that cast shadows can be utilized even for displays involving rocks of several achromatic surface colors (dark through light), in which the shadow cast by the target rock was not the darkest region in the scene. Finally, in contrast with reports of experiments by others involving polygonal figures, we found no evidence for an effect of illumination direction (above vs. below) on search times.Office of Naval Research (N00014-94-1-0597, N00014-95-1-0409

    Photo-Realistic Scenes with Cast Shadows Show No Above/Below Search Asymmetries for Illumination Direction

    Full text link
    Visual search is extended from the domain of polygonal figures presented on a uniform field to photo-realistic scenes containing target objects in dense, naturalistic backgrounds. The target in a trial is a computer-rendered rock protruding in depth from a "wall" of rocks of roughly similar size but different shapes. Subjects responded "present" when one rock appeared closer than the rest, owing to occlusions or cast shadows, and "absent" when all rocks appeared to be at the same depth. Results showed that cast shadows can significantly decrease reaction times compared to scenes with no cast shadows, in which the target was revealed only by occlusions of rocks behind it. A control experiment showed that cast shadows can be utilized even for displays involving rocks of several achromatic surface colors (dark through light), in which the shadow cast by the target rock was not the darkest region in the scene. Finally, in contrast with reports of experiments by others involving polygonal figures, we found no evidence for an effect of illumination direction (above vs. below) on search times.Office of Naval Research (N00014-94-1-0597, N00014-95-1-0409

    Virtualized Welding Based Learning of Human Welder Behaviors for Intelligent Robotic Welding

    Get PDF
    Combining human welder (with intelligence and sensing versatility) and automated welding robots (with precision and consistency) can lead to next generation intelligent welding systems. In this dissertation intelligent welding robots are developed by process modeling / control method and learning the human welder behavior. Weld penetration and 3D weld pool surface are first accurately controlled for an automated Gas Tungsten Arc Welding (GTAW) machine. Closed-form model predictive control (MPC) algorithm is derived for real-time welding applications. Skilled welder response to 3D weld pool surface by adjusting the welding current is then modeled using Adaptive Neuro-Fuzzy Inference System (ANFIS), and compared to the novice welder. Automated welding experiments confirm the effectiveness of the proposed human response model. A virtualized welding system is then developed that enables transferring the human knowledge into a welding robot. The learning of human welder movement (i.e., welding speed) is first realized with Virtual Reality (VR) enhancement using iterative K-means based local ANFIS modeling. As a separate effort, the learning is performed without VR enhancement utilizing a fuzzy classifier to rank the data and only preserve the high ranking “correct” response. The trained supervised ANFIS model is transferred to the welding robot and the performance of the controller is examined. A fuzzy weighting based data fusion approach to combine multiple machine and human intelligent models is proposed. The data fusion model can outperform individual machine-based control algorithm and welder intelligence-based models (with and without VR enhancement). Finally a data-driven approach is proposed to model human welder adjustments in 3D (including welding speed, arc length, and torch orientations). Teleoperated training experiments are conducted in which a human welder tries to adjust the torch movements in 3D based on his observation on the real-time weld pool image feedback. The data is off-line rated by the welder and a welder rating system is synthesized. ANFIS model is then proposed to correlate the 3D weld pool characteristic parameters and welder’s torch movements. A foundation is thus established to rapidly extract human intelligence and transfer such intelligence into welding robots
    • …
    corecore