66,310 research outputs found

    Naming the Pain in Requirements Engineering: A Design for a Global Family of Surveys and First Results from Germany

    Get PDF
    For many years, we have observed industry struggling in defining a high quality requirements engineering (RE) and researchers trying to understand industrial expectations and problems. Although we are investigating the discipline with a plethora of empirical studies, they still do not allow for empirical generalisations. To lay an empirical and externally valid foundation about the state of the practice in RE, we aim at a series of open and reproducible surveys that allow us to steer future research in a problem-driven manner. We designed a globally distributed family of surveys in joint collaborations with different researchers and completed the first run in Germany. The instrument is based on a theory in the form of a set of hypotheses inferred from our experiences and available studies. We test each hypothesis in our theory and identify further candidates to extend the theory by correlation and Grounded Theory analysis. In this article, we report on the design of the family of surveys, its underlying theory, and the full results obtained from Germany with participants from 58 companies. The results reveal, for example, a tendency to improve RE via internally defined qualitative methods rather than relying on normative approaches like CMMI. We also discovered various RE problems that are statistically significant in practice. For instance, we could corroborate communication flaws or moving targets as problems in practice. Our results are not yet fully representative but already give first insights into current practices and problems in RE, and they allow us to draw lessons learnt for future replications. Our results obtained from this first run in Germany make us confident that the survey design and instrument are well-suited to be replicated and, thereby, to create a generalisable empirical basis of RE in practice

    Bayesian Hierarchical Modelling for Tailoring Metric Thresholds

    Full text link
    Software is highly contextual. While there are cross-cutting `global' lessons, individual software projects exhibit many `local' properties. This data heterogeneity makes drawing local conclusions from global data dangerous. A key research challenge is to construct locally accurate prediction models that are informed by global characteristics and data volumes. Previous work has tackled this problem using clustering and transfer learning approaches, which identify locally similar characteristics. This paper applies a simpler approach known as Bayesian hierarchical modeling. We show that hierarchical modeling supports cross-project comparisons, while preserving local context. To demonstrate the approach, we conduct a conceptual replication of an existing study on setting software metrics thresholds. Our emerging results show our hierarchical model reduces model prediction error compared to a global approach by up to 50%.Comment: Short paper, published at MSR '18: 15th International Conference on Mining Software Repositories May 28--29, 2018, Gothenburg, Swede
    • …
    corecore