23,657 research outputs found

    A Cross-Modal Image Fusion Method Guided by Human Visual Characteristics

    Full text link
    The characteristics of feature selection, nonlinear combination and multi-task auxiliary learning mechanism of the human visual perception system play an important role in real-world scenarios, but the research of image fusion theory based on the characteristics of human visual perception is less. Inspired by the characteristics of human visual perception, we propose a robust multi-task auxiliary learning optimization image fusion theory. Firstly, we combine channel attention model with nonlinear convolutional neural network to select features and fuse nonlinear features. Then, we analyze the impact of the existing image fusion loss on the image fusion quality, and establish the multi-loss function model of unsupervised learning network. Secondly, aiming at the multi-task auxiliary learning mechanism of human visual perception system, we study the influence of multi-task auxiliary learning mechanism on image fusion task on the basis of single task multi-loss network model. By simulating the three characteristics of human visual perception system, the fused image is more consistent with the mechanism of human brain image fusion. Finally, in order to verify the superiority of our algorithm, we carried out experiments on the combined vision system image data set, and extended our algorithm to the infrared and visible image and the multi-focus image public data set for experimental verification. The experimental results demonstrate the superiority of our fusion theory over state-of-arts in generality and robustness

    MMFNet: A Multi-modality MRI Fusion Network for Segmentation of Nasopharyngeal Carcinoma

    Full text link
    Segmentation of nasopharyngeal carcinoma (NPC) from Magnetic Resonance Images (MRI) is a crucial prerequisite for NPC radiotherapy. However, manually segmenting of NPC is time-consuming and labor-intensive. Additionally, single-modality MRI generally cannot provide enough information for its accurate delineation. Therefore, a multi-modality MRI fusion network (MMFNet) based on three modalities of MRI (T1, T2 and contrast-enhanced T1) is proposed to complete accurate segmentation of NPC. The backbone of MMFNet is designed as a multi-encoder-based network, consisting of several encoders to capture modality-specific features and one single decoder to fuse them and obtain high-level features for NPC segmentation. A fusion block is presented to effectively fuse features from multi-modality MRI. It firstly recalibrates low-level features captured from modality-specific encoders to highlight both informative features and regions of interest, then fuses weighted features by a residual fusion block to keep balance between fused ones and high-level features from decoder. Moreover, a training strategy named self-transfer, which utilizes pre-trained modality-specific encoders to initialize multi-encoder-based network, is proposed to make full mining of information from different modalities of MRI. The proposed method based on multi-modality MRI can effectively segment NPC and its advantages are validated by extensive experiments.Comment: 34 pages, 12 figure

    Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification

    Full text link
    Person re-identification (re-ID) requires rapid, flexible yet discriminant representations to quickly generalize to unseen observations on-the-fly and recognize the same identity across disjoint camera views. Recent effective methods are developed in a pair-wise similarity learning system to detect a fixed set of features from distinct regions which are mapped to their vector embeddings for the distance measuring. However, the most relevant and crucial parts of each image are detected independently without referring to the dependency conditioned on one and another. Also, these region based methods rely on spatial manipulation to position the local features in comparable similarity measuring. To combat these limitations, in this paper we introduce the Deep Co-attention based Comparators (DCCs) that fuse the co-dependent representations of the paired images so as to focus on the relevant parts of both images and produce their \textit{relative representations}. Given a pair of pedestrian images to be compared, the proposed model mimics the foveation of human eyes to detect distinct regions concurrent on both images, namely co-dependent features, and alternatively attend to relevant regions to fuse them into the similarity learning. Our comparator is capable of producing dynamic representations relative to a particular sample every time, and thus well-suited to the case of re-identifying pedestrians on-the-fly. We perform extensive experiments to provide the insights and demonstrate the effectiveness of the proposed DCCs in person re-ID. Moreover, our approach has achieved the state-of-the-art performance on three benchmark data sets: DukeMTMC-reID \cite{DukeMTMC}, CUHK03 \cite{FPNN}, and Market-1501 \cite{Market1501}

    A Symmetric Encoder-Decoder with Residual Block for Infrared and Visible Image Fusion

    Full text link
    In computer vision and image processing tasks, image fusion has evolved into an attractive research field. However, recent existing image fusion methods are mostly built on pixel-level operations, which may produce unacceptable artifacts and are time-consuming. In this paper, a symmetric encoder-decoder with a residual block (SEDR) for infrared and visible image fusion is proposed. For the training stage, the SEDR network is trained with a new dataset to obtain a fixed feature extractor. For the fusion stage, first, the trained model is utilized to extract the intermediate features and compensation features of two source images. Then, extracted intermediate features are used to generate two attention maps, which are multiplied to the input features for refinement. In addition, the compensation features generated by the first two convolutional layers are merged and passed to the corresponding deconvolutional layers. At last, the refined features are fused for decoding to reconstruct the final fused image. Experimental results demonstrate that the proposed fusion method (named as SEDRFuse) outperforms the state-of-the-art fusion methods in terms of both subjective and objective evaluations

    Multiresolution and Multimodal Speech Recognition with Transformers

    Full text link
    This paper presents an audio visual automatic speech recognition (AV-ASR) system using a Transformer-based architecture. We particularly focus on the scene context provided by the visual information, to ground the ASR. We extract representations for audio features in the encoder layers of the transformer and fuse video features using an additional crossmodal multihead attention layer. Additionally, we incorporate a multitask training criterion for multiresolution ASR, where we train the model to generate both character and subword level transcriptions. Experimental results on the How2 dataset, indicate that multiresolution training can speed up convergence by around 50% and relatively improves word error rate (WER) performance by upto 18% over subword prediction models. Further, incorporating visual information improves performance with relative gains upto 3.76% over audio only models. Our results are comparable to state-of-the-art Listen, Attend and Spell-based architectures.Comment: Accepted for ACL 202

    Selective Kernel Networks

    Full text link
    In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.Comment: CVPR 201

    Question Guided Modular Routing Networks for Visual Question Answering

    Full text link
    This paper studies the task of Visual Question Answering (VQA), which is topical in Multimedia community recently. Particularly, we explore two critical research problems existed in VQA: (1) efficiently fusing the visual and textual modalities; (2) enabling the visual reasoning ability of VQA models in answering complex questions. To address these challenging problems, a novel Question Guided Modular Routing Networks (QGMRN) has been proposed in this paper. Particularly, The QGMRN is composed of visual, textual and routing network. The visual and textual network serve as the backbones for the generic feature extractors of visual and textual modalities. QGMRN can fuse the visual and textual modalities at multiple semantic levels. Typically, the visual reasoning is facilitated by the routing network in a discrete and stochastic way by using Gumbel-Softmax trick for module selection. When the input reaches a certain modular layer, routing network newly proposed in this paper, dynamically selects a portion of modules from that layer to process the input depending on the question features generated by the textual network. It can also learn to reason by routing between the generic modules without additional supervision information or expert knowledge. Benefiting from the dynamic routing mechanism, QGMRN can outperform the previous classical VQA methods by a large margin and achieve the competitive results against the state-of-the-art methods. Furthermore, attention mechanism is integrated into our QGMRN model and thus can further boost the model performance. Empirically, extensive experiments on the CLEVR and CLEVR-Humans datasets validate the effectiveness of our proposed model, and the state-of-the-art performance has been achieved

    Natural Language Inference over Interaction Space

    Full text link
    Natural Language Inference (NLI) task requires an agent to determine the logical relationship between a natural language premise and a natural language hypothesis. We introduce Interactive Inference Network (IIN), a novel class of neural network architectures that is able to achieve high-level understanding of the sentence pair by hierarchically extracting semantic features from interaction space. We show that an interaction tensor (attention weight) contains semantic information to solve natural language inference, and a denser interaction tensor contains richer semantic information. One instance of such architecture, Densely Interactive Inference Network (DIIN), demonstrates the state-of-the-art performance on large scale NLI copora and large-scale NLI alike corpus. It's noteworthy that DIIN achieve a greater than 20% error reduction on the challenging Multi-Genre NLI (MultiNLI) dataset with respect to the strongest published system.Comment: 15 pages, 2 figures, under review as ICLR proceeding, Published at Sixth International Conference on Learning Representations, ICLR 201

    Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification

    Full text link
    Text in natural images contains rich semantics that are often highly relevant to objects or scene. In this paper, we focus on the problem of fully exploiting scene text for visual understanding. The main idea is combining word representations and deep visual features into a globally trainable deep convolutional neural network. First, the recognized words are obtained by a scene text reading system. Then, we combine the word embedding of the recognized words and the deep visual features into a single representation, which is optimized by a convolutional neural network for fine-grained image classification. In our framework, the attention mechanism is adopted to reveal the relevance between each recognized word and the given image, which further enhances the recognition performance. We have performed experiments on two datasets: Con-Text dataset and Drink Bottle dataset, that are proposed for fine-grained classification of business places and drink bottles, respectively. The experimental results consistently demonstrate that the proposed method combining textual and visual cues significantly outperforms classification with only visual representations. Moreover, we have shown that the learned representation improves the retrieval performance on the drink bottle images by a large margin, making it potentially useful in product search

    Modality Attention for End-to-End Audio-visual Speech Recognition

    Full text link
    Audio-visual speech recognition (AVSR) system is thought to be one of the most promising solutions for robust speech recognition, especially in noisy environment. In this paper, we propose a novel multimodal attention based method for audio-visual speech recognition which could automatically learn the fused representation from both modalities based on their importance. Our method is realized using state-of-the-art sequence-to-sequence (Seq2seq) architectures. Experimental results show that relative improvements from 2% up to 36% over the auditory modality alone are obtained depending on the different signal-to-noise-ratio (SNR). Compared to the traditional feature concatenation methods, our proposed approach can achieve better recognition performance under both clean and noisy conditions. We believe modality attention based end-to-end method can be easily generalized to other multimodal tasks with correlated information.Comment: accepted by ICASSP201
    corecore