9 research outputs found

    The data concept behind the data: From metadata models and labelling schemes towards a generic spectral library

    Get PDF
    Spectral libraries play a major role in imaging spectroscopy. They are commonly used to store end-member and spectrally pure material spectra, which are primarily used for mapping or unmixing purposes. However, the development of spectral libraries is time consuming and usually sensor and site dependent. Spectral libraries are therefore often developed, used and tailored only for a specific case study and only for one sensor. Multi-sensor and multi-site use of spectral libraries is difficult and requires technical effort for adaptation, transformation, and data harmonization steps. Especially the huge amount of urban material specifications and its spectral variations hamper the setup of a complete spectral library consisting of all available urban material spectra. By a combined use of different urban spectral libraries, besides the improvement of spectral inter- and intra-class variability, missing material spectra could be considered with respect to a multi-sensor/ -site use. Publicly available spectral libraries mostly lack the metadata information that is essential for describing spectra acquisition and sampling background, and can serve to some extent as a measure of quality and reliability of the spectra and the entire library itself. In the GenLib project, a concept for a generic, multi-site and multi-sensor usable spectral library for image spectra on the urban focus was developed. This presentation will introduce a 1) unified, easy-to-understand hierarchical labeling scheme combined with 2) a comprehensive metadata concept that is 3) implemented in the SPECCHIO spectral information system to promote the setup and usability of a generic urban spectral library (GUSL). The labelling scheme was developed to ensure the translation of individual spectral libraries with their own labelling schemes and their usually varying level of details into the GUSL framework. It is based on a modified version of the EAGLE classification concept by combining land use, land cover, land characteristics and spectral characteristics. The metadata concept consists of 59 mandatory and optional attributes that are intended to specify the spatial context, spectral library information, references, accessibility, calibration, preprocessing steps, and spectra specific information describing library spectra implemented in the GUSL. It was developed on the basis of existing metadata concepts and was subject of an expert survey. The metadata concept and the labelling scheme are implemented in the spectral information system SPECCHIO, which is used for sharing and holding GUSL spectra. It allows easy implementation of spectra as well as their specification with the proposed metadata information to extend the GUSL. Therefore, the proposed data model represents a first fundamental step towards a generic usable and continuously expandable spectral library for urban areas. The metadata concept and the labelling scheme also build the basis for the necessary adaptation and transformation steps of the GUSL in order to use it entirely or in excerpts for further multi-site and multi-sensor applications

    Feature Papers of Drones - Volume II

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 24–41 are focused on drone applications, but emphasize two types: firstly, those related to agriculture and forestry (articles 24–35) where the number of applications of drones dominates all other possible applications. These articles review the latest research and future directions for precision agriculture, vegetation monitoring, change monitoring, forestry management, and forest fires. Secondly, articles 36–41 addresses the water and marine application of drones for ecological and conservation-related applications with emphasis on the monitoring of water resources and habitat monitoring. Finally, articles 42–54 looks at just a few of the huge variety of potential applications of civil drones from different points of view, including the following: the social acceptance of drone operations in urban areas or their influential factors; 3D reconstruction applications; sensor technologies to either improve the performance of existing applications or to open up new working areas; and machine and deep learning development

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Historical Land use/Land cover classification and its change detection mapping using Different Remotely Sensed Data from LANDSAT (MSS, TM and ETM+) and Terra (ASTER) sensors: a case study of the Euphrates River Basin in Syria with focus on agricultural irrigation projects

    Get PDF
    This thesis deals spatially and regionally with the natural boundaries of the Euphrates River Basin (ERB) in Syria. Scientifically, the research covers the application of remote sensing science (optical remote sensing: LANDSAT-MSS, TM, and ETM+; and TERRA: ASTER); and methodologically, in Land Use/Land Cover (LULC) classification and mapping, automatically and/or semi-automatically; in LULC-change detection; and finally in the mapping of historical irrigation and agricultural projects for the extraction of differing crop types and the estimation of their areas. With regard to time, the work is based on the years 1975, 1987, 2005 and 2007. Initially, preprocessing of the satellite data (geometric- and radiometric- processing, image enhancement, best bands composite selection, transformation, mosaicing and finally subsetting) was carried out. Then, the Land Use/Land Cover Classification System (LCCS) of the Food and Agriculture Organization (FAO) was chosen. The following steps were followed in LULC- classification and change detection mapping: visual interpretation in addition to digital image processing techniques; pixel-based classification methods; unsupervised classification: ISODATA-method; and supervised classification and multistage supervised approaches using the algorithms: Maximum Likelihood Classifier (MLC), Neural Network classifier (NN) and Support Vector Machines (SVM). These were trialed on a test area to determine the optimized classification approach/algorithm for application on the whole study area (ERB) based on the available imagery. Pre- and post- classification change detection methods (comparison approaches) were used to detect changes in land use/land cover-classes (for the years 1975, 1987 and 2007) in the study area. The remote sensing methods show a high potential in mapping historical and present land use/land cover classes and its changes over time. Significant results are also possible for agricultural crop classification in relatively large regional areas (the ERB in Syria is almost 50,335 km²). Change trends in the study area and period was characterized by land-intensive agricultural expansion. The rapid, more labor- and capital- intensive growth in the agricultural sector was enabled by the introduction of fertilizer, improved access to rural roads and markets, and the expansion of the government irrigation projects. Irrigated areas increased 148 % in the past 32 years from 249,681 ha in 1975 to 596,612 ha in 2007

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore