492 research outputs found

    Higher-order components dictate higher-order dynamics in hypergraphs

    Full text link
    The presence of the giant component is a necessary condition for the emergence of collective behavior in complex networked systems. Unlike networks, hypergraphs have an important native feature that components of hypergraphs might be of higher order, which could be defined in terms of the number of common nodes shared between hyperedges. Although the extensive higher-order component (HOC) could be witnessed ubiquitously in real-world hypergraphs, the role of the giant HOC in collective behavior on hypergraphs has yet to be elucidated. In this Letter, we demonstrate that the presence of the giant HOC fundamentally alters the outbreak patterns of higher-order contagion dynamics on real-world hypergraphs. Most crucially, the giant HOC is required for the higher-order contagion to invade globally from a single seed. We confirm it by using synthetic random hypergraphs containing adjustable and analytically calculable giant HOC.Comment: Main: 6 pages, 4 figures. Supplementary Material: 7 pages, 7 figure

    Critical random hypergraphs: The emergence of a giant set of identifiable vertices

    Full text link
    We consider a model for random hypergraphs with identifiability, an analogue of connectedness. This model has a phase transition in the proportion of identifiable vertices when the underlying random graph becomes critical. The phase transition takes various forms, depending on the values of the parameters controlling the different types of hyperedges. It may be continuous as in a random graph. (In fact, when there are no higher-order edges, it is exactly the emergence of the giant component.) In this case, there is a sequence of possible sizes of ``components'' (including but not restricted to N^{2/3}). Alternatively, the phase transition may be discontinuous. We are particularly interested in the nature of the discontinuous phase transition and are able to exhibit precise asymptotics. Our method extends a result of Aldous [Ann. Probab. 25 (1997) 812-854] on component sizes in a random graph.Comment: Published at http://dx.doi.org/10.1214/009117904000000847 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs

    Full text link
    We generalize the belief-propagation algorithm to sparse random networks with arbitrary distributions of motifs (triangles, loops, etc.). Each vertex in these networks belongs to a given set of motifs (generalization of the configuration model). These networks can be treated as sparse uncorrelated hypergraphs in which hyperedges represent motifs. Here a hypergraph is a generalization of a graph, where a hyperedge can connect any number of vertices. These uncorrelated hypergraphs are tree-like (hypertrees), which crucially simplify the problem and allow us to apply the belief-propagation algorithm to these loopy networks with arbitrary motifs. As natural examples, we consider motifs in the form of finite loops and cliques. We apply the belief-propagation algorithm to the ferromagnetic Ising model on the resulting random networks. We obtain an exact solution of this model on networks with finite loops or cliques as motifs. We find an exact critical temperature of the ferromagnetic phase transition and demonstrate that with increasing the clustering coefficient and the loop size, the critical temperature increases compared to ordinary tree-like complex networks. Our solution also gives the birth point of the giant connected component in these loopy networks.Comment: 9 pages, 4 figure
    • …
    corecore