7 research outputs found

    The Weight Distributions of a Class of Cyclic Codes with Three Nonzeros over F3

    Full text link
    Cyclic codes have efficient encoding and decoding algorithms. The decoding error probability and the undetected error probability are usually bounded by or given from the weight distributions of the codes. Most researches are about the determination of the weight distributions of cyclic codes with few nonzeros, by using quadratic form and exponential sum but limited to low moments. In this paper, we focus on the application of higher moments of the exponential sum to determine the weight distributions of a class of ternary cyclic codes with three nonzeros, combining with not only quadratic form but also MacWilliams' identities. Another application of this paper is to emphasize the computer algebra system Magma for the investigation of the higher moments. In the end, the result is verified by one example using Matlab.Comment: 10 pages, 3 table

    Self-dual codes, subcode structures, and applications.

    Get PDF
    The classification of self-dual codes has been an extremely active area in coding theory since 1972 [33]. A particularly interesting class of self-dual codes is those of Type II which have high minimum distance (called extremal or near-extremal). It is notable that this class of codes contains famous unique codes: the extended Hamming [8,4,4] code, the extended Golay [24,12,8] code, and the extended quadratic residue [48,24,12] code. We examine the subcode structures of Type II codes for lengths up to 24, extremal Type II codes of length 32, and give partial results on the extended quadratic residue [48,24,12] code. We also develop a generalization of self-dual codes to Network Coding Theory and give some results on existence of self-dual network codes with largest minimum distance for lengths up to 10. Complementary Information Set (CIS for short) codes, a class of classical codes recently developed in [7], have important applications to Cryptography. CIS codes contain self-dual codes as a subclass. We give a new classification result for CIS codes of length 14 and a partial result for length 16

    A Lower Bound on the Optimum Distance Profiles of the Second-Order Reed–Muller Codes

    No full text
    corecore