33,306 research outputs found

    Trellis-Based Equalization for Sparse ISI Channels Revisited

    Full text link
    Sparse intersymbol-interference (ISI) channels are encountered in a variety of high-data-rate communication systems. Such channels have a large channel memory length, but only a small number of significant channel coefficients. In this paper, trellis-based equalization of sparse ISI channels is revisited. Due to the large channel memory length, the complexity of maximum-likelihood detection, e.g., by means of the Viterbi algorithm (VA), is normally prohibitive. In the first part of the paper, a unified framework based on factor graphs is presented for complexity reduction without loss of optimality. In this new context, two known reduced-complexity algorithms for sparse ISI channels are recapitulated: The multi-trellis VA (M-VA) and the parallel-trellis VA (P-VA). It is shown that the M-VA, although claimed, does not lead to a reduced computational complexity. The P-VA, on the other hand, leads to a significant complexity reduction, but can only be applied for a certain class of sparse channels. In the second part of the paper, a unified approach is investigated to tackle general sparse channels: It is shown that the use of a linear filter at the receiver renders the application of standard reduced-state trellis-based equalizer algorithms feasible, without significant loss of optimality. Numerical results verify the efficiency of the proposed receiver structure.Comment: To be presented at the 2005 IEEE Int. Symp. Inform. Theory (ISIT 2005), September 4-9, 2005, Adelaide, Australi

    A Lyra2 FPGA Core for Lyra2REv2-Based Cryptocurrencies

    Full text link
    Lyra2REv2 is a hashing algorithm that consists of a chain of individual hashing algorithms and it is used as a proof-of-work function in several cryptocurrencies that aim to be ASIC-resistant. The most crucial hashing algorithm in the Lyra2REv2 chain is a specific instance of the general Lyra2 algorithm. In this work we present the first FPGA implementation of the aforementioned instance of Lyra2 and we explain how several properties of the algorithm can be exploited in order to optimize the design.Comment: 5 pages, to be presented at the IEEE International Symposium on Circuits and Systems (ISCAS) 201

    A Standalone FPGA-based Miner for Lyra2REv2 Cryptocurrencies

    Full text link
    Lyra2REv2 is a hashing algorithm that consists of a chain of individual hashing algorithms, and it is used as a proof-of-work function in several cryptocurrencies. The most crucial and exotic hashing algorithm in the Lyra2REv2 chain is a specific instance of the general Lyra2 algorithm. This work presents the first hardware implementation of the specific instance of Lyra2 that is used in Lyra2REv2. Several properties of the aforementioned algorithm are exploited in order to optimize the design. In addition, an FPGA-based hardware implementation of a standalone miner for Lyra2REv2 on a Xilinx Multi-Processor System on Chip is presented. The proposed Lyra2REv2 miner is shown to be significantly more energy efficient than both a GPU and a commercially available FPGA-based miner. Finally, we also explain how the simplified Lyra2 and Lyra2REv2 architectures can be modified with minimal effort to also support the recent Lyra2REv3 chained hashing algorithm.Comment: 13 pages, accepted for publication in IEEE Trans. Circuits Syst. I. arXiv admin note: substantial text overlap with arXiv:1807.0576

    Training a Convolutional Neural Network for Appearance-Invariant Place Recognition

    Full text link
    Place recognition is one of the most challenging problems in computer vision, and has become a key part in mobile robotics and autonomous driving applications for performing loop closure in visual SLAM systems. Moreover, the difficulty of recognizing a revisited location increases with appearance changes caused, for instance, by weather or illumination variations, which hinders the long-term application of such algorithms in real environments. In this paper we present a convolutional neural network (CNN), trained for the first time with the purpose of recognizing revisited locations under severe appearance changes, which maps images to a low dimensional space where Euclidean distances represent place dissimilarity. In order for the network to learn the desired invariances, we train it with triplets of images selected from datasets which present a challenging variability in visual appearance. The triplets are selected in such way that two samples are from the same location and the third one is taken from a different place. We validate our system through extensive experimentation, where we demonstrate better performance than state-of-art algorithms in a number of popular datasets

    Status of the R&D activities for the upgrade of the ALICE TPC

    Full text link
    After the Long Shutdown 2 the LHC will provide lead-lead collisions at interaction rates as high as 50kz. In order to cope with such conditions the ALICE Time Projection Chamber (TPC) needs to be upgraded. After the upgrade the TPC will run in a continuous mode, without any degradation of the momentum and dE/dx resolution compared to the performance of the present TPC. Since readout by multi-wire proportional chambers is no longer feasible with these requirements, new technologies have to be employed. In the new readout chambers the electron amplification is provided by a stack of four Gas Electron Multiplier (GEM) foils. Their high voltage settings and orientation have been optimised to provide an energy resolution better then 12% at the photopeak of 55Fe. At the same settings the Ion BackFlow into the drift volume is less than 1% of the effective number of ions produced during gas amplification and the primary ionisations. This is necessary to prevent the accumulation of space charge, which eventually will distort the field in the drift volume. To ensure stable operation at the high loads during LHC run 3 the chambers have to be robust against discharges, too. With the selected configuration in a quadruple GEM stack the discharge probability is kept at the level of 10−1210^{-12} discharges per incoming hadron. An overview of the ALICE TPC upgrade activities will be given in these proceedings and the optimised settings foreseen for the GEM stacks of the future readout chambers are introduced. Furthermore the outcome of two beam time campaigns at SPS and PS (at CERN) in the end of 2014 is shown. At this campaigns the stability against discharges and the dE/dx performance of a full size readout chamber prototype was tested. In addition it is reported on charging-up studies of 4GEM stacks and on tests of electromagnetic sagging of large GEM foils.Comment: 4 pages, 3 figures, Proceedings of "4th Conference on Micro-Pattern Gaseous Detectors

    Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox

    Full text link
    The black-hole information paradox has fueled a fascinating effort to reconcile the predictions of general relativity and those of quantum mechanics. Gravitational considerations teach us that black holes must trap everything that falls into them. Quantum mechanically the mass of a black hole leaks away as featureless (Hawking) radiation, but if the black hole vanishes, where is the information about the matter that made it? We treat the states of the in-fallen matter quantum mechanically and show that the black-hole information paradox becomes more severe. Our formulation of the paradox rules out one of the most conservative resolutions: that the state of the in-falling matter might be hidden in correlations between semi-classical Hawking radiation and the internal states of the black hole. As a consequence, either unitarity or Hawking's semi-classical predictions must break down. Any resolution of the black-hole information crisis must elucidate one of these possibilities.Comment: We first obtained this result two years ag

    Real-Time MRI of Continent and Stress Incontinent Male Patients after Orthotopic Ileal Neobladder

    Get PDF
    Introduction: The aim of this study was to correlate anatomic differences with continence status in male patients after cystoprostatectomy and ileal neobladder using real-time magnetic resonance imaging. Patients and Methods: Anatomic differences of 14 male patients (7 daytime continent and 7 stress incontinent) with ileal neobladder were determined by measuring the orthogonal distance of the bladder neck to the pubococcygeal line (PCL) to correlate anatomic differences with continence status. Results: The median distance of the bladder neck to PCL was +5.4 mm in continent patients before voiding whereas in incontinent patients it was +2 mm (p = 0.012). During the Valsalva maneuver, the median distance in continent patients was +4 and in incontinent patients -3 mm (p = 0.003). At the end of micturition, the median distance was +2.3 mm in continent patients and -12 mm in incontinent patients (p = 0.002). Conclusions: The bladder neck in incontinent patients showed more pronounced mobility in relation to the PCL during micturition and the Valsalva maneuver as compared to continent patients. In addition, the ileal neobladder was positioned significantly lower in the pelvis of incontinent patients. These preliminary results suggest that a stable bladder neck may be an important factor to reach full continence in patients with ileal neobladder. Copyright (C) 2011 S. Karger AG, Base
    • …
    corecore