271 research outputs found

    Counting Realizations of Laman Graphs on the Sphere

    Get PDF
    We present an algorithm that computes the number of realizations of a Laman graph on a sphere for a general choice of the angles between the vertices. The algorithm is based on the interpretation of such a realization as a point in the moduli space of stable curves of genus zero with marked points, and on the explicit description, due to Keel, of the Chow ring of this space

    Lower bounds on the number of realizations of rigid graphs

    Get PDF
    Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Towards this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gr\"obner basis computations

    Generic rigidity of reflection frameworks

    Full text link
    We give a combinatorial characterization of generic minimally rigid reflection frameworks. The main new idea is to study a pair of direction networks on the same graph such that one admits faithful realizations and the other has only collapsed realizations. In terms of infinitesimal rigidity, realizations of the former produce a framework and the latter certifies that this framework is infinitesimally rigid.Comment: 14 pages, 2 figure

    On the maximal number of real embeddings of minimally rigid graphs in R2\mathbb{R}^2, R3\mathbb{R}^3 and S2S^2

    Get PDF
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd\mathbb{R}^d or on a sphere and which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3\mathbb{R}^3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2\mathbb{R}^2 and R3\mathbb{R}^3, while in the case of S2S^2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al, 2018)

    Slider-pinning Rigidity: a Maxwell-Laman-type Theorem

    Get PDF
    We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley's direction networks.Comment: Accepted, to appear in Discrete and Computational Geometr

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2n4n2)4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)P(n2)1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2n42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2n4n2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2n3n2(n6n3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    Non-crossing frameworks with non-crossing reciprocals

    Full text link
    We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the self-stress; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that if such an embedding is sufficiently generic, then the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (i.e., non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation embeddings of Laman circuits. All self-stresses on a planar graph correspond to liftings to piece-wise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs.Comment: 32 pages, 23 figure
    corecore