95,386 research outputs found

    Local Approximation Schemes for Ad Hoc and Sensor Networks

    Get PDF
    We present two local approaches that yield polynomial-time approximation schemes (PTAS) for the Maximum Independent Set and Minimum Dominating Set problem in unit disk graphs. The algorithms run locally in each node and compute a (1+ε)-approximation to the problems at hand for any given ε > 0. The time complexity of both algorithms is O(TMIS + log*! n/εO(1)), where TMIS is the time required to compute a maximal independent set in the graph, and n denotes the number of nodes. We then extend these results to a more general class of graphs in which the maximum number of pair-wise independent nodes in every r-neighborhood is at most polynomial in r. Such graphs of polynomially bounded growth are introduced as a more realistic model for wireless networks and they generalize existing models, such as unit disk graphs or coverage area graphs

    An Interactive Tool to Explore and Improve the Ply Number of Drawings

    Full text link
    Given a straight-line drawing Γ\Gamma of a graph G=(V,E)G=(V,E), for every vertex vv the ply disk DvD_v is defined as a disk centered at vv where the radius of the disk is half the length of the longest edge incident to vv. The ply number of a given drawing is defined as the maximum number of overlapping disks at some point in R2\mathbb{R}^2. Here we present a tool to explore and evaluate the ply number for graphs with instant visual feedback for the user. We evaluate our methods in comparison to an existing ply computation by De Luca et al. [WALCOM'17]. We are able to reduce the computation time from seconds to milliseconds for given drawings and thereby contribute to further research on the ply topic by providing an efficient tool to examine graphs extensively by user interaction as well as some automatic features to reduce the ply number.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Metric Dimension for Gabriel Unit Disk Graphs is NP-Complete

    Full text link
    We show that finding a minimal number of landmark nodes for a unique virtual addressing by hop-distances in wireless ad-hoc sensor networks is NP-complete even if the networks are unit disk graphs that contain only Gabriel edges. This problem is equivalent to Metric Dimension for Gabriel unit disk graphs. The Gabriel edges of a unit disc graph induce a planar O(\sqrt{n}) distance and an optimal energy spanner. This is one of the most interesting restrictions of Metric Dimension in the context of wireless multi-hop networks.Comment: A brief announcement of this result has been published in the proceedings of ALGOSENSORS 201

    Coalescence of Euclidean geodesics on the Poisson-Delaunay triangulation

    Get PDF
    Let us consider Euclidean first-passage percolation on the Poisson-Delaunay triangulation. We prove almost sure coalescence of any two semi-infinite geodesics with the same asymptotic direction. The proof is based on an adapted Burton-Keane argument and makes use of the concentration property for shortest-path lengths in the considered graphs. Moreover, by considering the specific example of the relative neighborhood graph, we illustrate that our approach extends to further well-known graphs in computational geometry. As an application, we show that the expected number of semi-infinite geodesics starting at a given vertex and leaving a disk of a certain radius grows at most sublinearly in the radius.Comment: 21 pages, 7 figure
    • …
    corecore