34,277 research outputs found

    Optimal Bounds for the kk-cut Problem

    Full text link
    In the kk-cut problem, we want to find the smallest set of edges whose deletion breaks a given (multi)graph into kk connected components. Algorithms of Karger & Stein and Thorup showed how to find such a minimum kk-cut in time approximately O(n2k)O(n^{2k}). The best lower bounds come from conjectures about the solvability of the kk-clique problem, and show that solving kk-cut is likely to require time Ω(nk)\Omega(n^k). Recent results of Gupta, Lee & Li have given special-purpose algorithms that solve the problem in time n1.98k+O(1)n^{1.98k + O(1)}, and ones that have better performance for special classes of graphs (e.g., for small integer weights). In this work, we resolve the problem for general graphs, by showing that the Contraction Algorithm of Karger outputs any fixed kk-cut of weight αλk\alpha \lambda_k with probability Ωk(n−αk)\Omega_k(n^{-\alpha k}), where λk\lambda_k denotes the minimum kk-cut size. This also gives an extremal bound of Ok(nk)O_k(n^k) on the number of minimum kk-cuts and an algorithm to compute a minimum kk-cut in similar runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight kk-clique. The first main ingredient in our result is a fine-grained analysis of how the graph shrinks -- and how the average degree evolves -- in the Karger process. The second ingredient is an extremal bound on the number of cuts of size less than 2λk/k2 \lambda_k/k, using the Sunflower lemma.Comment: Final version of arXiv:1911.09165 with new and more general proof

    On matchings and factors of graphs /

    Get PDF
    In Section 1, we recall the historical sketch of matching and factor theory of graphs, and also introduce some necessary definitions and notation. In Section 2, we present a sufficient condition for the existence of a (g, f)-factor in graphs with the odd-cycle property, which is simpler than that of Lovasz\u27s (g, f)-Factor Theorem. From this, we derive some further results, and we show that (a) every r-regular graph G with the odd-cycle property has a k-factor, where 0 ≤ k ≤ r and k|V(G)| ≡ 0 (mod 2), (b) every graph G with the strong odd-cycle property with k|V(G)|≡ 0 (mod 2) is k-factorable if and only if G is a km-regular graph for some m ≥ 1, and (c) every regular graph of even order with the strong odd-cycle property is of the second class (i.e. the edge chromatic number is Δ). Chvátal [26] presented the following two conjectures that (1) a graph G has a 2-factor if tough(G) ≥ 3/2, and (2) a graph G has a k-factor if k|V(G)| ≡ 0 (mod 2) and tough(G) ≥ k. Enomoto et.al. [32] proved the second conjecture. They also proved the sharpness of the bound on tough(G) that guarantees the existence of a k-factor. This implies that the first conjecture is false. In Section 3, we show that the result of the second conjecture can be improved in some sense, and the first conjecture is also true if the graph considered has the odd-cycle property. Anderson [3] stated that a graph G of even order has a 1-factor if bind(G) ≥ 4/3, and Katerinis and Woodall [48] proved that a graph G of order n has a k-factor if bind(G) ˃ (2k -I)(n - 1)/(k(n - 2) + 3), where k ≥ 2, n ≥ 4k - 6 and kn ≡ 0 (mod 2). In Section 4, we shall present some similar conditions for the existence of [a, b]-factors. In Section 5, we study the existence of [a, b]-parity-factors in a graph, among which we extend some known theorems from 1-factors to {1, 3, ... , 2n - 1}-factors, or from k-factors to [a, b]-parity-factors. Also, extending Petersen\u27s 2-Factorization Theorem, we proved that a graph is [2a, 2b]-even-factorable if and only if it is a [2na, 2nb]-even-graph for some n ≥ 1. Plummer showed that (a) (in [58]) every graph G of even order is k-extendable if tough(G) ˃ k, and (b) (in [59]) every (2k+1)-connected graph G is k-extendable if G is K1,3-free, respectively. In Section 6, we give a counterpart of the former in terms of binding number, and extend the latter from K1,3-free graphs to K1,n-free graphs. Furthermore, we present a result toward the problem, posed by Saito [61] and Plummer [60], of characterizing the graphs that are maximal k-extendable

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Powers of Hamilton cycles in pseudorandom graphs

    Full text link
    We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph GG is (ε,p,k,ℓ)(\varepsilon,p,k,\ell)-pseudorandom if for all disjoint XX and Y⊂V(G)Y\subset V(G) with ∣X∣≥εpkn|X|\ge\varepsilon p^kn and ∣Y∣≥εpℓn|Y|\ge\varepsilon p^\ell n we have e(X,Y)=(1±ε)p∣X∣∣Y∣e(X,Y)=(1\pm\varepsilon)p|X||Y|. We prove that for all β>0\beta>0 there is an ε>0\varepsilon>0 such that an (ε,p,1,2)(\varepsilon,p,1,2)-pseudorandom graph on nn vertices with minimum degree at least βpn\beta pn contains the square of a Hamilton cycle. In particular, this implies that (n,d,λ)(n,d,\lambda)-graphs with λ≪d5/2n−3/2\lambda\ll d^{5/2 }n^{-3/2} contain the square of a Hamilton cycle, and thus a triangle factor if nn is a multiple of 33. This improves on a result of Krivelevich, Sudakov and Szab\'o [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403--426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions.Comment: 30 pages, 1 figur

    Measures of edge-uncolorability

    Get PDF
    The resistance r(G)r(G) of a graph GG is the minimum number of edges that have to be removed from GG to obtain a graph which is Δ(G)\Delta(G)-edge-colorable. The paper relates the resistance to other parameters that measure how far is a graph from being Δ\Delta-edge-colorable. The first part considers regular graphs and the relation of the resistance to structural properties in terms of 2-factors. The second part studies general (multi-) graphs GG. Let rv(G)r_v(G) be the minimum number of vertices that have to be removed from GG to obtain a class 1 graph. We show that r(G)rv(G)≤⌊Δ(G)2⌋\frac{r(G)}{r_v(G)} \leq \lfloor \frac{\Delta(G)}{2} \rfloor, and that this bound is best possible.Comment: 9 page

    Petersen cores and the oddness of cubic graphs

    Full text link
    Let GG be a bridgeless cubic graph. Consider a list of kk 1-factors of GG. Let EiE_i be the set of edges contained in precisely ii members of the kk 1-factors. Let μk(G)\mu_k(G) be the smallest ∣E0∣|E_0| over all lists of kk 1-factors of GG. If GG is not 3-edge-colorable, then μ3(G)≥3\mu_3(G) \geq 3. In [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78(3) (2015) 195-206] it is shown that if μ3(G)≠0\mu_3(G) \not = 0, then 2μ3(G)2 \mu_3(G) is an upper bound for the girth of GG. We show that μ3(G)\mu_3(G) bounds the oddness ω(G)\omega(G) of GG as well. We prove that ω(G)≤23μ3(G)\omega(G)\leq \frac{2}{3}\mu_3(G). If μ3(G)=23μ3(G)\mu_3(G) = \frac{2}{3} \mu_3(G), then every μ3(G)\mu_3(G)-core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4-edge-connected cubic graph GG with ω(G)=23μ3(G)\omega(G) = \frac{2}{3}\mu_3(G). On the other hand, the difference between ω(G)\omega(G) and 23μ3(G)\frac{2}{3}\mu_3(G) can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer k≥3k\geq 3, there exists a bridgeless cubic graph GG such that μ3(G)=k\mu_3(G)=k.Comment: 13 pages, 9 figure
    • …
    corecore