49,170 research outputs found

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    The design of aircraft using the decision support problem technique

    Get PDF
    The Decision Support Problem Technique for unified design, manufacturing and maintenance is being developed at the Systems Design Laboratory at the University of Houston. This involves the development of a domain-independent method (and the associated software) that can be used to process domain-dependent information and thereby provide support for human judgment. In a computer assisted environment, this support is provided in the form of optimal solutions to Decision Support Problems

    Observation of charge ordering signal in monovalent doped Nd0.75Na0.25-xKxMn1O3 (0 ≤ x ≤ 0.10) manganites

    Get PDF
    K doping in the compound of Nd0.75Na0.25-xKxMn1O3 (x = 0, 0.05 and 0.10) manganites have been investigated to study its effect on crystalline phase and surface morphology as well as electrical transport and magnetic properties. The structure properties of the Nd0.75Na0.25- xKxMnO3 manganite have been characterized using X-ray diffraction measurement and it proved that the crystalline phase of samples were essentially single phased and indexed as orthorhombic structure with space group of Pnma. The morphological study from scanning electron microscope showed there was an improvement on the grains boundaries and sizes as well as the compactness with K doping suggestively due to the difference of ionic radius. On the other hand, DC electrical resistivity measurement showed all samples exhibit insulating behavior. However, analysis of dlnρ/dT-1 vs. T revealed the clearly peaks could be observed at temperature 210K for x = 0 and the peaks were shifted to the lower temperature around 190 K and 165 K for x = 0.05 and x = 0.1 respectively, indicate the existence of charge ordering (CO) state in the compound. Meanwhile, the investigation on magnetic behavior showed all samples exhibit transition from paramagnetic phase to anti-ferromagnetic phase with decreasing temperature and the TN was observed to shift to lower temperature suggestively due to weakening of CO stat

    Sensor data-based decision making

    Get PDF
    Increasing globalization and growing industrial system complexity has amplified the interest in the use of information provided by sensors as a means of improving overall manufacturing system performance and maintainability. However, utilization of sensors can only be effective if the real-time data can be integrated into the necessary business processes, such as production planning, scheduling and execution systems. This integration requires the development of intelligent decision making models that can effectively process the sensor data into information and suggest appropriate actions. To be able to improve the performance of a system, the health of the system also needs to be maintained. In many cases a single sensor type cannot provide sufficient information for complex decision making including diagnostics and prognostics of a system. Therefore, a combination of sensors should be used in an integrated manner in order to achieve desired performance levels. Sensor generated data need to be processed into information through the use of appropriate decision making models in order to improve overall performance. In this dissertation, which is presented as a collection of five journal papers, several reactive and proactive decision making models that utilize data from single and multi-sensor environments are developed. The first paper presents a testbed architecture for Auto-ID systems. An adaptive inventory management model which utilizes real-time RFID data is developed in the second paper. In the third paper, a complete hardware and inventory management solution, which involves the integration of RFID sensors into an extremely low temperature industrial freezer, is presented. The last two papers in the dissertation deal with diagnostic and prognostic decision making models in order to assure the healthy operation of a manufacturing system and its components. In the fourth paper a Mahalanobis-Taguchi System (MTS) based prognostics tool is developed and it is used to estimate the remaining useful life of rolling element bearings using data acquired from vibration sensors. In the final paper, an MTS based prognostics tool is developed for a centrifugal water pump, which fuses information from multiple types of sensors in order to take diagnostic and prognostics decisions for the pump and its components --Abstract, page iv
    corecore