1,228 research outputs found

    The enriched Crouzeix-Raviart elements are equivalent to the Raviart-Thomas elements

    Full text link
    For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix-Raviart elements are actually identical to the first order Raviart-Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart-Thomas element is equal to that by the Crouzeix-Raviart element. For the eigenvalue problem of Laplace operator, this paper proves that the error of the enriched Crouzeix-Raviart element is equivalent to that of the Raviart-Thomas element up to higher order terms

    Lower bounds of eigenvalues of the biharmonic operators by the rectangular Morley element methods

    Full text link
    In this paper, we analyze the lower bound property of the discrete eigenvalues by the rectangular Morley elements of the biharmonic operators in both two and three dimensions. The analysis relies on an identity for the errors of eigenvalues. We explore a refined property of the canonical interpolation operators and use it to analyze the key term in this identity. In particular, we show that such a term is of higher order for two dimensions, and is negative and of second order for three dimensions, which causes a main difficulty. To overcome it, we propose a novel decomposition of the first term in the aforementioned identity. Finally, we establish a saturation condition to show that the discrete eigenvalues are smaller than the exact ones. We present some numerical results to demonstrate the theoretical results

    The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods

    Full text link
    The aim of the paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The general conclusion herein is that if local approximation properties of nonconforming finite element spaces VhV_h are better than global continuity properties of VhV_h, corresponding methods will produce lower bounds for eigenvalues. More precisely, under three conditions on continuity and approximation properties of nonconforming finite element spaces we first show abstract error estimates of approximate eigenvalues and eigenfunctions. Subsequently, we propose one more condition and prove that it is sufficient to guarantee nonconforming finite element methods to produce lower bounds for eigenvalues of symmetric elliptic operators. As one application, we show that this condition hold for most nonconforming elements in literature. As another important application, this condition provides a guidance to modify known nonconforming elements in literature and to propose new nonconforming elements. In fact, we enrich locally the Crouzeix-Raviart element such that the new element satisfies the condition; we propose a new nonconforming element for second order elliptic operators and prove that it will yield lower bounds for eigenvalues. Finally, we prove the saturation condition for most nonconforming elements.Comment: 24 page
    • …
    corecore