1,910 research outputs found

    Measuring the Eccentricity of Items

    Full text link
    The long-tail phenomenon tells us that there are many items in the tail. However, not all tail items are the same. Each item acquires different kinds of users. Some items are loved by the general public, while some items are consumed by eccentric fans. In this paper, we propose a novel metric, item eccentricity, to incorporate this difference between consumers of the items. Eccentric items are defined as items that are consumed by eccentric users. We used this metric to analyze two real-world datasets of music and movies and observed the characteristics of items in terms of eccentricity. The results showed that our defined eccentricity of an item does not change much over time, and classified eccentric and noneccentric items present significantly distinct characteristics. The proposed metric effectively separates the eccentric and noneccentric items mixed in the tail, which could not be done with the previous measures, which only consider the popularity of items.Comment: Accepted at IEEE International Conference on Systems, Man, and Cybernetics (SMC) 201

    LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates

    Get PDF
    State-of-the-art item recommendation algorithms, which apply Factorization Machines (FM) as a scoring function and pairwise ranking loss as a trainer (PRFM for short), have been recently investigated for the implicit feedback based context-aware recommendation problem (IFCAR). However, good recommenders particularly emphasize on the accuracy near the top of the ranked list, and typical pairwise loss functions might not match well with such a requirement. In this paper, we demonstrate, both theoretically and empirically, PRFM models usually lead to non-optimal item recommendation results due to such a mismatch. Inspired by the success of LambdaRank, we introduce Lambda Factorization Machines (LambdaFM), which is particularly intended for optimizing ranking performance for IFCAR. We also point out that the original lambda function suffers from the issue of expensive computational complexity in such settings due to a large amount of unobserved feedback. Hence, instead of directly adopting the original lambda strategy, we create three effective lambda surrogates by conducting a theoretical analysis for lambda from the top-N optimization perspective. Further, we prove that the proposed lambda surrogates are generic and applicable to a large set of pairwise ranking loss functions. Experimental results demonstrate LambdaFM significantly outperforms state-of-the-art algorithms on three real-world datasets in terms of four standard ranking measures

    Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

    Full text link
    The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.Comment: SIGIR 202
    • …
    corecore