5 research outputs found

    Location dependent key management schemes supported by random selected cell reporters in wireless sensor networks

    Get PDF
    PhD ThesisIn order to secure vital and critical information inside Wireless Sensor Net- works (WSNs), a security requirement of data con dentiality, authenticity and availability should be guaranteed. The leading key management schemes are those that employ location information to generate security credentials. Therefore, this thesis proposes three novel location-dependent key manage- ment schemes. First, a novel Location-Dependent Key Management Protocol for a Single Base Station (LKMP-SBS) is presented. As a location-dependent scheme, the WSN zone is divided virtually into cells. Then, any event report generated by each particular cell is signed by a new type of endorsement called a cell- reporter signature, where cell-reporters are de ned as a set of nodes selected randomly by the BS out of the nodes located within the particular cell. This system is analysed and proved to outperform other schemes in terms of data security requirements. Regarding the data con dentiality, for three values of z (1,2,3) the improvement is 95%, 90% and 85% respectively when 1000 nodes are compromised. Furthermore, in terms of data authenticity an enhancement of 49%, 24%, 12.5% is gained using our approach with z = 1; 2; 3 respectively when half of all nodes are compromised. Finally, the optimum number of cell reporters is extensively investigated related to the security requirements, it is proven to be z = n 2 . The second contribution is the design of a novel Location-Dependent Key Man- agement Protocol for Multiple Base Stations (LKMP-MBS). In this scheme, di erent strategies of handling the WSN by multiple BSs is investigated. Ac- cordingly, the optimality of the scheme is analysed in terms of the number of cell reporters. Both data con dentiality and authenticity have been proven to be / e / 1 N . The optimum number of cell reporters had been calculated as zopt = n 2M , PM `=1 jz(`) optj = n 2M . Moreover, the security robustness of this scheme is analysed and proved to outperform relevant schemes in terms of data con- dentiality and authenticity. Furthermore, in comparison with LKMP-SBS, the adoption of multiple base stations is shown to be signi cantly important in improving the overall system security. The third contribution is the design of the novel Mobility- Enabled, Location- dependant Key Managment Protocol for Multiple BSs (MELKMP-MBS). This scheme presents a key management scheme, which is capable of serving a WSN with mobile nodes. Several types of handover are presented in order to main- tain the mobile node service availability during its movement between two zones in the network. Accordingly, the communication overhead of MELKMP- MBS is analysed, simulated and compared with the overhead of other schemes. Results show a signi cant improvement over other schemes in terms of han- dover e ciency and communication over head. Furthermore, the optimality of WSN design such as the value of N; n is investigated in terms of communi- cation overhead in all protocols and it is shown that the optimum number of nodes in each cell, which cause the minimum communication overhead in the network , is n = 3 p 2N.Ministry of Higher Education and Scienti c Research in Iraq and the Iraqi Cultural Attach e in Londo

    Using IoT to assist monitoring of the methane gas extraction at Lake Kivu

    Get PDF
    Capstone Project submitted to the Department of Engineering, Ashesi University in partial fulfillment of the requirements for the award of Bachelor of Science degree in Computer Engineering, May 2021Methane gas is a powerful greenhouse gas with global warming potential. The current techniques being used to monitor the leaks are expensive and likely onerous and demands for trained operators. There are available solutions tried by the space agencies such as National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) using satellites to better understand the distribution of greenhouse gases on regional and global scales. Those are ENVISAT, GOSAT, OCO-2, and the recently launched TROPOMI instrument on the Sentinel 5P satellite, but all these, regardless of the advanced technology associated cannot pinpoint the source of emissions. In this study, the performance of low-cost Internet of Things (IoT) sensors and isolation forest anomaly detection machine learning technique was implemented. Isolation Forest is one of the outstanding outlier detectors in the real-time DataStream for faulty detection, and money laundering in banking industry. It was tested in this system to improve the accuracy in detecting the methane gas leak. According to the experimental results, the anomaly detection based on isolation forest achieved an excellent performance in terms of accuracy of outlier detection while minimizing the false positives. Decarbonization is an essential component in the climate system, and this plays a key role in reducing methane emissions. Finally, the study presents future research directions to carry out research on the machine learning with Internet of Things (IoT).Ashesi Universit

    Unsupervised machine learning based key management in wireless sensor networks

    No full text
    In distributed sensor applications, the secured infrastructure plays a major role in processing and transmission of data. The data transfer in wireless sensor network (WSN) is equipped security measure that prevents the manipulation of data theft by the attackers. The key management protocol offers secured delivery of messages that includes integrity and authenticity via key generation, key distribution and maintenance. In this paper, we develop a lightweight key management protocol (LKMP) that involves reduced memory consumption and processing power. The study uses machine learning algorithm for key management in WSN, and the machine learning uses unsupervised learning mechanism. The simulation is conducted in network simulator and it is compared with existing state-of-the-art models. The results of simulation shows that the proposed method achieves higher rate of throughput, security and resilience than its predecessors
    corecore