47 research outputs found

    Codes over the non-unital non-commutative ring EE using simplicial complexes

    Full text link
    There are exactly two non-commutative rings of size 44, namely, E=⟨a,b ∣ 2a=2b=0,a2=a,b2=b,ab=a,ba=b⟩E = \langle a, b ~\vert ~ 2a = 2b = 0, a^2 = a, b^2 = b, ab= a, ba = b\rangle and its opposite ring FF. These rings are non-unital. A subset DD of EmE^m is defined with the help of simplicial complexes, and utilized to construct linear left-EE-codes CDL={(v⋅d)d∈D:v∈Em}C^L_D=\{(v\cdot d)_{d\in D} : v\in E^m\} and right-EE-codes CDR={(d⋅v)d∈D:v∈Em}C^R_D=\{(d\cdot v)_{d\in D} : v\in E^m\}. We study their corresponding binary codes obtained via a Gray map. The weight distributions of all these codes are computed. We achieve a couple of infinite families of optimal codes with respect to the Griesmer bound. Ashikhmin-Barg's condition for minimality of a linear code is satisfied by most of the binary codes we constructed here. All the binary codes in this article are few-weight codes, and self-orthogonal codes under certain mild conditions. This is the first attempt to study the structure of linear codes over non-unital non-commutative rings using simplicial complexes.Comment: 20 page

    Group rings: Units and their applications in self-dual codes

    Get PDF
    The initial research presented in this thesis is the structure of the unit group of the group ring Cn x D6 over a field of characteristic 3 in terms of cyclic groups, specifically U(F3t(Cn x D6)). There are numerous applications of group rings, such as topology, geometry and algebraic K-theory, but more recently in coding theory. Following the initial work on establishing the unit group of a group ring, we take a closer look at the use of group rings in algebraic coding theory in order to construct self-dual and extremal self-dual codes. Using a well established isomorphism between a group ring and a ring of matrices, we construct certain self-dual and formally self-dual codes over a finite commutative Frobenius ring. There is an interesting relationships between the Automorphism group of the code produced and the underlying group in the group ring. Building on the theory, we describe all possible group algebras that can be used to construct the well-known binary extended Golay code. The double circulant construction is a well-known technique for constructing self-dual codes; combining this with the established isomorphism previously mentioned, we demonstrate a new technique for constructing self-dual codes. New theory states that under certain conditions, these self-dual codes correspond to unitary units in group rings. Currently, using methods discussed, we construct 10 new extremal self-dual codes of length 68. In the search for new extremal self-dual codes, we establish a new technique which considers a double bordered construction. There are certain conditions where this new technique will produce self-dual codes, which are given in the theoretical results. Applying this new construction, we construct numerous new codes to verify the theoretical results; 1 new extremal self-dual code of length 64, 18 new codes of length 68 and 12 new extremal self-dual codes of length 80. Using the well established isomorphism and the common four block construction, we consider a new technique in order to construct self-dual codes of length 68. There are certain conditions, stated in the theoretical results, which allow this construction to yield self-dual codes, and some interesting links between the group ring elements and the construction. From this technique, we construct 32 new extremal self-dual codes of length 68. Lastly, we consider a unique construction as a combination of block circulant matrices and quadratic circulant matrices. Here, we provide theory surrounding this construction and conditions for full effectiveness of the method. Finally, we present the 52 new self-dual codes that result from this method; 1 new self-dual code of length 66 and 51 new self-dual codes of length 68. Note that different weight enumerators are dependant on different values of β. In addition, for codes of length 68, the weight enumerator is also defined in terms of γ, and for codes of length 80, the weight enumerator is also de ned in terms of α

    Energy Efficiency Analysis And Optimization For Mobile Platforms

    Get PDF
    The introduction of mobile devices changed the landscape of computing. Gradually, these devices are replacing traditional personal computer (PCs) to become the devices of choice for entertainment, connectivity, and productivity. There are currently at least 45.5 million people in the United States who own a mobile device, and that number is expected to increase to 1.5 billion by 2015. Users of mobile devices expect and mandate that their mobile devices have maximized performance while consuming minimal possible power. However, due to the battery size constraints, the amount of energy stored in these devices is limited and is only growing by 5% annually. As a result, we focused in this dissertation on energy efficiency analysis and optimization for mobile platforms. We specifically developed SoftPowerMon, a tool that can power profile Android platforms in order to expose the power consumption behavior of the CPU. We also performed an extensive set of case studies in order to determine energy inefficiencies of mobile applications. Through our case studies, we were able to propose optimization techniques in order to increase the energy efficiency of mobile devices and proposed guidelines for energy-efficient application development. In addition, we developed BatteryExtender, an adaptive user-guided tool for power management of mobile devices. The tool enables users to extend battery life on demand for a specific duration until a particular task is completed. Moreover, we examined the power consumption of System-on-Chips (SoCs) and observed the impact on the energy efficiency in the event of offloading tasks from the CPU to the specialized custom engines. Based on our case studies, we were able to demonstrate that current software-based power profiling techniques for SoCs can have an error rate close to 12%, which needs to be addressed in order to be able to optimize the energy consumption of the SoC. Finally, we summarize our contributions and outline possible direction for future research in this field

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Subject Index Volumes 1–200

    Get PDF

    Vehicle and Traffic Safety

    Get PDF
    The book is devoted to contemporary issues regarding the safety of motor vehicles and road traffic. It presents the achievements of scientists, specialists, and industry representatives in the following selected areas of road transport safety and automotive engineering: active and passive vehicle safety, vehicle dynamics and stability, testing of vehicles (and their assemblies), including electric cars as well as autonomous vehicles. Selected issues from the area of accident analysis and reconstruction are discussed. The impact on road safety of aspects such as traffic control systems, road infrastructure, and human factors is also considered
    corecore