12,156 research outputs found

    Structuring Decisions Under Deep Uncertainty

    Get PDF
    Innovative research on decision making under ‘deep uncertainty’ is underway in applied fields such as engineering and operational research, largely outside the view of normative theorists grounded in decision theory. Applied methods and tools for decision support under deep uncertainty go beyond standard decision theory in the attention that they give to the structuring of decisions. Decision structuring is an important part of a broader philosophy of managing uncertainty in decision making, and normative decision theorists can both learn from, and contribute to, the growing deep uncertainty decision support literature

    Deep Reinforcement Learning for Multi-Agent Interaction

    Full text link
    The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.Comment: Published in AI Communications Special Issue on Multi-Agent Systems Research in the U

    Combining motion planning with social reward sources for collaborative human-robot navigation task design

    Get PDF
    Across the human history, teamwork is one of the main pillars sustaining civilizations and technology development. In consequence, as the world embraces omatization, human-robot collaboration arises naturally as a cornerstone. This applies to a huge spectrum of tasks, most of them involving navigation. As a result, tackling pure collaborative navigation tasks can be a good first foothold for roboticists in this enterprise. In this thesis, we define a useful framework for knowledge representation in human-robot collaborative navigation tasks and propose a first solution to the human-robot collaborative search task. After validating the model, two derived projects tackling its main weakness are introduced: the compilation of a human search dataset and the implementation of a multi-agent planner for human-robot navigatio
    • …
    corecore