24,594 research outputs found

    Progressive Transactional Memory in Time and Space

    Full text link
    Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared \emph{data items} into atomic transactions. A transaction may commit, in which case it appears to have executed sequentially or it may \emph{abort}, in which case no data item is updated. The TM programming paradigm emerged as an alternative to conventional fine-grained locking techniques, offering ease of programming and compositionality. Though typically themselves implemented using locks, TMs hide the inherent issues of lock-based synchronization behind a nice transactional programming interface. In this paper, we explore inherent time and space complexity of lock-based TMs, with a focus of the most popular class of \emph{progressive} lock-based TMs. We derive that a progressive TM might enforce a read-only transaction to perform a quadratic (in the number of the data items it reads) number of steps and access a linear number of distinct memory locations, closing the question of inherent cost of \emph{read validation} in TMs. We then show that the total number of \emph{remote memory references} (RMRs) that take place in an execution of a progressive TM in which nn concurrent processes perform transactions on a single data item might reach Ω(nlogn)\Omega(n \log n), which appears to be the first RMR complexity lower bound for transactional memory.Comment: Model of Transactional Memory identical with arXiv:1407.6876, arXiv:1502.0272

    Inherent Limitations of Hybrid Transactional Memory

    Full text link
    Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort, nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the fundamental limitations of building a HyTM with nontrivial concurrency between hardware and software transactions are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses, and allows us to formally quantify and analyze the amount of overhead (instrumentation) of a HyTM scheme. We prove the following: (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for weak progress guarantees, and (2) under reasonable assumptions, in any opaque progressive HyTM, a hardware transaction must incur instrumentation costs linear in the size of its data set. We further provide two upper bound implementations whose instrumentation costs are optimal with respect to their progress guarantees. In sum, this paper captures for the first time an inherent trade-off between the degree of concurrency a HyTM provides between hardware and software transactions, and the amount of instrumentation overhead the implementation must incur
    corecore