759 research outputs found

    5G Millimeter Wave Cellular System Capacity with Fully Digital Beamforming

    Full text link
    Due to heavy reliance of millimeter-wave (mmWave) wireless systems on directional links, Beamforming (BF) with high-dimensional arrays is essential for cellular systems in these frequencies. How to perform the array processing in a power efficient manner is a fundamental challenge. Analog and hybrid BF require fewer analog-to-digital converters (ADCs), but can only communicate in a small number of directions at a time,limiting directional search, spatial multiplexing and control signaling. Digital BF enables flexible spatial processing, but must be operated at a low quantization resolution to stay within reasonable power levels. This paper presents a simple additive white Gaussian noise (AWGN) model to assess the effect of low resolution quantization of cellular system capacity. Simulations with this model reveal that at moderate resolutions (3-4 bits per ADC), there is negligible loss in downlink cellular capacity from quantization. In essence, the low-resolution ADCs limit the high SNR, where cellular systems typically do not operate. The findings suggest that low-resolution fully digital BF architectures can be power efficient, offer greatly enhanced control plane functionality and comparable data plane performance to analog BF.Comment: To appear in the Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 201

    Low Power Analog-to-Digital Conversion in Millimeter Wave Systems: Impact of Resolution and Bandwidth on Performance

    Full text link
    The wide bandwidth and large number of antennas used in millimeter wave systems put a heavy burden on the power consumption at the receiver. In this paper, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance. Results demonstrate that: (i) For both analog and digital combining, there is a maximum bandwidth beyond which the achievable rate decreases; (ii) Depending on the operating regime of the system, analog combiner may have higher rate but digital combining uses less bandwidth when only ADC power consumption is considered, (iii) digital combining may have higher rate when power consumption of all the components in the receiver front-end are taken into account.Comment: 8 pages, 6 figures, in Proc. of IEEE Information Theory and Applications Workshop, Feb. 201

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    corecore