105,588 research outputs found

    One-way Quantum Key Distribution System based on Planar Lightwave Circuits

    Full text link
    We developed a one-way quantum key distribution (QKD) system based upon a planar lightwave circuit (PLC) interferometer. This interferometer is expected to be free from the backscattering inherent in commercially available two-way QKD systems and phase drift without active compensation. A key distribution experiment with spools of standard telecom fiber showed that the bit error rate was as low as 6% for a 100-km key distribution using an attenuated laser pulse with a mean photon number of 0.1 and was determined solely by the detector noise. This clearly demonstrates the advantages of our PLC-based one-way QKD system over two-way QKD systems for long distance key distribution.Comment: 23 pages, 5 figure

    Which verification qubits perform best for secure communication in noisy channel?

    Full text link
    In secure quantum communication protocols, a set of single qubits prepared using 2 or more mutually unbiased bases or a set of nn-qubit (n2n\geq2) entangled states of a particular form are usually used to form a verification string which is subsequently used to detect traces of eavesdropping. The qubits that form a verification string are referred to as decoy qubits, and there exists a large set of different quantum states that can be used as decoy qubits. In the absence of noise, any choice of decoy qubits provides equivalent security. In this paper, we examine such equivalence for noisy environment (e.g., in amplitude damping, phase damping, collective dephasing and collective rotation noise channels) by comparing the decoy-qubit assisted schemes of secure quantum communication that use single qubit states as decoy qubits with the schemes that use entangled states as decoy qubits. Our study reveals that the single qubit assisted scheme perform better in some noisy environments, while some entangled qubits assisted schemes perform better in other noisy environments. Specifically, single qubits assisted schemes perform better in amplitude damping and phase damping noisy channels, whereas a few Bell-state-based decoy schemes are found to perform better in the presence of the collective noise. Thus, if the kind of noise present in a communication channel (i.e., the characteristics of the channel) is known or measured, then the present study can provide the best choice of decoy qubits required for implementation of schemes of secure quantum communication through that channel.Comment: 11 pages, 4 figure

    Trusted Noise in Continuous-Variable Quantum Key Distribution: a Threat and a Defense

    Full text link
    We address the role of the phase-insensitive trusted preparation and detection noise in the security of a continuous-variable quantum key distribution, considering the Gaussian protocols on the basis of coherent and squeezed states and studying them in the conditions of Gaussian lossy and noisy channels. The influence of such a noise on the security of Gaussian quantum cryptography can be crucial, even despite the fact that a noise is trusted, due to a strongly nonlinear behavior of the quantum entropies involved in the security analysis. We recapitulate the known effect of the preparation noise in both direct and reverse-reconciliation protocols, as well as the detection noise in the reverse-reconciliation scenario. As a new result, we show the negative role of the trusted detection noise in the direct-reconciliation scheme. We also describe the role of the trusted preparation or detection noise added at the reference side of the protocols in improving the robustness of the protocols to the channel noise, confirming the positive effect for the coherent-state reverse-reconciliation protocol. Finally, we address the combined effect of trusted noise added both in the source and the detector.Comment: 25 pages, 9 figure

    Experimental quantum key distribution based on a Bell test

    Full text link
    We report on a complete free-space field implementation of a modified Ekert91 protocol for quantum key distribution using entangled photon pairs. For each photon pair we perform a random choice between key generation and a Bell inequality. The amount of violation is used to determine the possible knowledge of an eavesdropper to ensure security of the distributed final key.Comment: 5 pages ReVTeX, 3 figures; version v2 with updated references and minor corrections, author spelling fixe
    corecore