2,293 research outputs found

    Factors Impacting Diversity and Effectiveness of Evolved Modular Robots

    Get PDF
    In many natural environments, different forms of living organisms successfully accomplish the same task while being diverse in shape and behavior. This biodiversity is what made life capable of adapting to disrupting changes. Being able to reproduce biodiversity in artificial agents, while still optimizing them for a particular task, might increase their applicability to scenarios where human response to unexpected changes is not possible. In this work, we focus on Voxel-based Soft Robots (VSRs), a form of robots that grants great freedom in the design of both morphology and controller and is hence promising in terms of biodiversity. We use evolutionary computation for optimizing, at the same time, morphology and controller of VSRs for the task of locomotion. We investigate experimentally whether three key factors—representation, Evolutionary Algorithm (EA), and environment—impact the emergence of biodiversity and if this occurs at the expense of effectiveness. We devise an automatic machine learning pipeline for systematically characterizing the morphology and behavior of robots resulting from the optimization process. We classify the robots into species and then measure biodiversity in populations of robots evolved in a multitude of conditions resulting from the combination of different morphology representations, controller representations, EAs, and environments. The experimental results suggest that, in general, EA and environment matter more than representation. We also propose a novel EA based on a speciation mechanism that operates on morphology and behavior descriptors and we show that it allows to jointly evolve morphology and controller of effective and diverse VSRs

    Harnessing the Power of Collective Intelligence: the Case Study of Voxel-based Soft Robots

    Get PDF
    The field of Evolutionary Robotics (ER) is concerned with the evolution of artificial agents---robots. Albeit groundbreaking, progress in the field has recently stagnated. In the research community, there is a strong feeling that a paradigm change has become necessary to disentangle ER. In particular, a solution has emerged from ideas from Collective Intelligence (CI). In CI---which has many relevant examples in nature---behavior emerges from the interaction between several components. In the absence of central intelligence, collective systems are usually more adaptable. In this thesis, we set out to harness the power of CI, focusing on the case study of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous and soft cubic blocks that actuate by altering their volume. We investigate two axes. First, the morphologies of VSRs are intrinsically modular and an ideal substrate for CI; nevertheless, controllers employed until now do not take advantage of such modularity. Our results prove that VSRs can truly be controlled by the CI of their modules. Second, we investigate the spatial and time scales of CI. In particular, we evolve a robot to detect its global body properties given only local information processing, and, in a different study, generalize better to unseen environmental conditions through Hebbian learning. We also consider how evolution and learning interact in VSRs. Looking beyond VSRs, we propose a novel soft robot formalism that more closely resembles natural tissues and blends local with global actuation.The field of Evolutionary Robotics (ER) is concerned with the evolution of artificial agents---robots. Albeit groundbreaking, progress in the field has recently stagnated. In the research community, there is a strong feeling that a paradigm change has become necessary to disentangle ER. In particular, a solution has emerged from ideas from Collective Intelligence (CI). In CI---which has many relevant examples in nature---behavior emerges from the interaction between several components. In the absence of central intelligence, collective systems are usually more adaptable. In this thesis, we set out to harness the power of CI, focusing on the case study of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous and soft cubic blocks that actuate by altering their volume. We investigate two axes. First, the morphologies of VSRs are intrinsically modular and an ideal substrate for CI; nevertheless, controllers employed until now do not take advantage of such modularity. Our results prove that VSRs can truly be controlled by the CI of their modules. Second, we investigate the spatial and time scales of CI. In particular, we evolve a robot to detect its global body properties given only local information processing, and, in a different study, generalize better to unseen environmental conditions through Hebbian learning. We also consider how evolution and learning interact in VSRs. Looking beyond VSRs, we propose a novel soft robot formalism that more closely resembles natural tissues and blends local with global actuation

    Evolving Hebbian Learning Rules in Voxel-based Soft Robots

    Get PDF
    According to Hebbian theory, synaptic plasticity is the ability of neurons to strengthen or weaken the synapses among them in response to stimuli. It plays a fundamental role in the processes of learning and memory of biological neural networks. With plasticity, biological agents can adapt on multiple timescales and outclass artificial agents, the majority of which still rely on static Artificial Neural Network (ANN) controllers. In this work, we focus on Voxel-based Soft Robots (VSRs), a class of simulated artificial agents, composed as aggregations of elastic cubic blocks. We propose a Hebbian ANN controller where every synapse is associated with a Hebbian rule that controls the way the weight is adapted during the VSR lifetime. For a given task and morphology, we optimize the controller for the task of locomotion by evolving, rather than the weights, the parameters of the Hebbian rules. Our results show that the Hebbian controller is comparable, often better than a non-Hebbian baseline and that it is more adaptable to unforeseen damages. We also provide novel insights into the inner workings of plasticity and demonstrate that “true” learning does take place, as the evolved controllers improve over the lifetime and generalize well

    Swarm of One: Bottom-up Emergence of Stable Robot Bodies from Identical Cells

    Full text link
    Unlike most human-engineered systems, biological systems are emergent from low-level interactions, allowing much broader diversity and superior adaptation to the complex environments. Inspired by the process of morphogenesis in nature, a bottom-up design approach for robot morphology is proposed to treat a robot's body as an emergent response to underlying processes rather than a predefined shape. This paper presents Loopy, a "Swarm-of-One" polymorphic robot testbed that can be viewed simultaneously as a robotic swarm and a single robot. Loopy's shape is determined jointly by self-organization and morphological computing using physically linked homogeneous cells. Experimental results show that Loopy can form symmetric shapes consisting of lobes. Using the the same set of parameters, even small amounts of initial noise can change the number of lobes formed. However, once in a stable configuration, Loopy has an "inertia" to transfiguring in response to dynamic parameters. By making the connections among self-organization, morphological computing, and robot design, this paper lays the foundation for more adaptable robot designs in the future.Comment: 6 pages, 6 figures, IROS 202

    Lamarck's Revenge: Inheritance of Learned Traits Can Make Robot Evolution Better

    Full text link
    Evolutionary robot systems offer two principal advantages: an advanced way of developing robots through evolutionary optimization and a special research platform to conduct what-if experiments regarding questions about evolution. Our study sits at the intersection of these. We investigate the question ``What if the 18th-century biologist Lamarck was not completely wrong and individual traits learned during a lifetime could be passed on to offspring through inheritance?'' We research this issue through simulations with an evolutionary robot framework where morphologies (bodies) and controllers (brains) of robots are evolvable and robots also can improve their controllers through learning during their lifetime. Within this framework, we compare a Lamarckian system, where learned bits of the brain are inheritable, with a Darwinian system, where they are not. Analyzing simulations based on these systems, we obtain new insights about Lamarckian evolution dynamics and the interaction between evolution and learning. Specifically, we show that Lamarckism amplifies the emergence of `morphological intelligence', the ability of a given robot body to acquire a good brain by learning, and identify the source of this success: `newborn' robots have a higher fitness because their inherited brains match their bodies better than those in a Darwinian system.Comment: preprint-nature scientific report. arXiv admin note: text overlap with arXiv:2303.1259
    • …
    corecore