21 research outputs found

    Comparing Computing Platforms for Deep Learning on a Humanoid Robot

    Full text link
    The goal of this study is to test two different computing platforms with respect to their suitability for running deep networks as part of a humanoid robot software system. One of the platforms is the CPU-centered Intel NUC7i7BNH and the other is a NVIDIA Jetson TX2 system that puts more emphasis on GPU processing. The experiments addressed a number of benchmarking tasks including pedestrian detection using deep neural networks. Some of the results were unexpected but demonstrate that platforms exhibit both advantages and disadvantages when taking computational performance and electrical power requirements of such a system into account.Comment: 12 pages, 5 figure

    NICOL: A Neuro-inspired Collaborative Semi-humanoid Robot that Bridges Social Interaction and Reliable Manipulation

    Full text link
    Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a major goal in robotics. However, many existing robotic platforms are either designed for social interaction or industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their social interaction and physical collaboration abilities. To bridge this gap, we present the novel semi-humanoid NICOL, the Neuro-Inspired COLlaborator. NICOL is a large, newly designed, scaled-up version of its well-evaluated predecessor, the Neuro-Inspired COmpanion (NICO). NICOL adopts NICO's head and facial expression display and extends its manipulation abilities in terms of precision, object size, and workspace size. Our contribution in this paper is twofold -- firstly, we introduce the design concept for NICOL, and secondly, we provide an evaluation of NICOL's manipulation abilities by presenting a novel extension for an end-to-end hybrid neuro-genetic visuomotor learning approach adapted to NICOL's more complex kinematics. We show that the approach outperforms the state-of-the-art Inverse Kinematics (IK) solvers KDL, TRACK-IK and BIO-IK. Overall, this article presents for the first time the humanoid robot NICOL, and contributes to the integration of social robotics and neural visuomotor learning for humanoid robots
    corecore