120 research outputs found

    Constructions and Noise Threshold of Hyperbolic Surface Codes

    Full text link
    We show how to obtain concrete constructions of homological quantum codes based on tilings of 2D surfaces with constant negative curvature (hyperbolic surfaces). This construction results in two-dimensional quantum codes whose tradeoff of encoding rate versus protection is more favorable than for the surface code. These surface codes would require variable length connections between qubits, as determined by the hyperbolic geometry. We provide numerical estimates of the value of the noise threshold and logical error probability of these codes against independent X or Z noise, assuming noise-free error correction

    Topologically Trivial Closed Walks in Directed Surface Graphs

    Full text link
    Let GG be a directed graph with nn vertices and mm edges, embedded on a surface SS, possibly with boundary, with first Betti number ÎČ\beta. We consider the complexity of finding closed directed walks in GG that are either contractible (trivial in homotopy) or bounding (trivial in integer homology) in SS. Specifically, we describe algorithms to determine whether GG contains a simple contractible cycle in O(n+m)O(n+m) time, or a contractible closed walk in O(n+m)O(n+m) time, or a bounding closed walk in O(ÎČ(n+m))O(\beta (n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in GG and in the dual graph G∗G^*; our contractible-closed-walk algorithm also relies on a seminal topological result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard. We also describe three polynomial-time algorithms to compute shortest contractible closed walks, depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with O(g2L2)O(g^2L^2) non-terminals that generates all contractible closed walks of length at most L, and only contractible closed walks, in a system of quads of genus g≄2g\ge2. Finally, we show that computing shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed walks are all NP-hard.Comment: 30 pages, 18 figures; fixed several minor bugs and added one figure. An extended abstraction of this paper will appear at SOCG 201

    Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures

    Full text link
    Let X_1 ,..., X_n be a collection of binary valued random variables and let f : {0,1}^n -> R be a Lipschitz function. Under a negative dependence hypothesis known as the {\em strong Rayleigh} condition, we show that f - E f satisfies a concentration inequality generalizing the classical Gaussian concentration inequality for sums of independent Bernoullis: P (S_n - E S_n > a) < exp (-2 a^2 / n). The class of strong Rayleigh measures includes determinantal measures, weighted uniform matroids and exclusion measures; some familiar examples from these classes are generalized negative binomials and spanning tree measures. For instance, the number of vertices of odd degree in a uniform random spanning tree of a graph satisfies a Gaussian concentration inequality with n replaced by |V|, the number of vertices. We also prove a continuous version for concentration of Lipschitz functionals of a determinantal point process

    A pedestrian's view on interacting particle systems, KPZ universality, and random matrices

    Full text link
    These notes are based on lectures delivered by the authors at a Langeoog seminar of SFB/TR12 "Symmetries and universality in mesoscopic systems" to a mixed audience of mathematicians and theoretical physicists. After a brief outline of the basic physical concepts of equilibrium and nonequilibrium states, the one-dimensional simple exclusion process is introduced as a paradigmatic nonequilibrium interacting particle system. The stationary measure on the ring is derived and the idea of the hydrodynamic limit is sketched. We then introduce the phenomenological Kardar-Parisi-Zhang (KPZ) equation and explain the associated universality conjecture for surface fluctuations in growth models. This is followed by a detailed exposition of a seminal paper of Johansson that relates the current fluctuations of the totally asymmetric simple exclusion process (TASEP) to the Tracy-Widom distribution of random matrix theory. The implications of this result are discussed within the framework of the KPZ conjecture.Comment: 52 pages, 4 figures; to appear in J. Phys. A: Math. Theo

    Sommaire / Contents tome 347, janvier–dĂ©cembre 2009

    Get PDF
    • 

    corecore