459 research outputs found

    Lucas' theorem: its generalizations, extensions and applications (1878--2014)

    Full text link
    In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient (nm){n\choose m} modulo a prime pp in terms of the binomial coefficients of the base-pp digits of nn and mm: {\it If pp is a prime, n=n0+n1p++nspsn=n_0+n_1p+\cdots +n_sp^s and m=m0+m1p++mspsm=m_0+m_1p+\cdots +m_sp^s are the pp-adic expansions of nonnegative integers nn and mm, then \begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}. \end{equation*}} The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of Lucas}), plays an important role in Number Theory and Combinatorics. In this article, consisting of six sections, we provide a historical survey of Lucas type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas like theorems for some generalized binomial coefficients, and some their applications. In Section 1 we present the fundamental congruences modulo a prime including the famous Lucas' theorem. In Section 2 we mention several known proofs and some consequences of Lucas' theorem. In Section 3 we present a number of extensions and variations of Lucas' theorem modulo prime powers. In Section 4 we consider the notions of the Lucas property and the double Lucas property, where we also present numerous integer sequences satisfying one of these properties or a certain Lucas type congruence. In Section 5 we collect several known Lucas type congruences for some generalized binomial coefficients. In particular, this concerns the Fibonomial coefficients, the Lucas uu-nomial coefficients, the Gaussian qq-nomial coefficients and their generalizations. Finally, some applications of Lucas' theorem in Number Theory and Combinatorics are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to Lucas' theore

    Fano 3-folds in codimension 4, Tom and Jerry, Part I

    Full text link
    This work is part of the Graded Ring Database project [GRDB], and is a sequel to [Altinok's 1998 PhD thesis] and [Altinok, Brown and Reid, Fano 3-folds, K3 surfaces and graded rings, in SISTAG (Singapore, 2001), Contemp. Math. 314, 2002, pp. 25-53]. We introduce a strategy based on Kustin-Miller unprojection that constructs many hundreds of Gorenstein codimension 4 ideals with 9x16 resolutions (that is, 9 equations and 16 first syzygies). Our two basic games are called Tom and Jerry; the main application is the biregular construction of most of the anticanonically polarised Mori Fano 3-folds of Altinok's thesis. There are 115 cases whose numerical data (in effect, the Hilbert series) allow a Type I projection. In every case, at least one Tom and one Jerry construction works, providing at least two deformation families of quasismooth Fano 3-folds having the same numerics but different topology.Comment: 34pp. This article links to the Graded Ring Database http://grdb.lboro.ac.uk/, and more information is available from webloc. cit. + Downloads. Update includes several clarifications and improvements; results essentially unchanged. To appear in Comp. Mat

    The geometry of fractal percolation

    Full text link
    A well studied family of random fractals called fractal percolation is discussed. We focus on the projections of fractal percolation on the plane. Our goal is to present stronger versions of the classical Marstrand theorem, valid for almost every realization of fractal percolation. The extensions go in three directions: {itemize} the statements work for all directions, not almost all, the statements are true for more general projections, for example radial projections onto a circle, in the case dimH>1\dim_H >1, each projection has not only positive Lebesgue measure but also has nonempty interior. {itemize}Comment: Survey submitted for AFRT2012 conferenc

    Classification of Torsion Subgroups for Mordell Curves

    Get PDF
    Elliptic curves are an interesting area of study in mathematics, laying at the intersection of algebra, geometry, and number theory. They are a powerful tool, having applications in everything from Andrew Wiles’ proof of Fermat’s Last Theorem to cybersecurity. In this paper, we first provide an introduction to elliptic curves by discussing their geometry and associated group structure. We then narrow our focus, further investigating the torsion subgroups of elliptic curves. In particular, we will examine two methods used to classify these subgroups. We finish by employing these methods to categorize the torsion subgroups for a specific family of elliptic curves known as Mordell curves

    Counting Coxeter's friezes over a finite field via moduli spaces

    Get PDF
    We count the number of Coxeter's friezes over a finite field. Our method uses geometric realizations of the spaces of friezes in a certain completion of the classical moduli space M0,n\mathcal{M}_{0,n} allowing repeated points in the configurations. Counting points in the completed moduli space over a finite field is related to the enumeration problem of counting partitions of cyclically ordered set of points into subsets containing no consecutive points. In Appendix we provide an elementary solution for this enumeration problem
    corecore