3,334 research outputs found

    Distinguishing Infections on Different Graph Topologies

    Full text link
    The history of infections and epidemics holds famous examples where understanding, containing and ultimately treating an outbreak began with understanding its mode of spread. Influenza, HIV and most computer viruses, spread person to person, device to device, through contact networks; Cholera, Cancer, and seasonal allergies, on the other hand, do not. In this paper we study two fundamental questions of detection: first, given a snapshot view of a (perhaps vanishingly small) fraction of those infected, under what conditions is an epidemic spreading via contact (e.g., Influenza), distinguishable from a "random illness" operating independently of any contact network (e.g., seasonal allergies); second, if we do have an epidemic, under what conditions is it possible to determine which network of interactions is the main cause of the spread -- the causative network -- without any knowledge of the epidemic, other than the identity of a minuscule subsample of infected nodes? The core, therefore, of this paper, is to obtain an understanding of the diagnostic power of network information. We derive sufficient conditions networks must satisfy for these problems to be identifiable, and produce efficient, highly scalable algorithms that solve these problems. We show that the identifiability condition we give is fairly mild, and in particular, is satisfied by two common graph topologies: the grid, and the Erdos-Renyi graphs

    Continuous-time quantum walks on one-dimension regular networks

    Full text link
    In this paper, we consider continuous-time quantum walks (CTQWs) on one-dimension ring lattice of N nodes in which every node is connected to its 2m nearest neighbors (m on either side). In the framework of the Bloch function ansatz, we calculate the spacetime transition probabilities between two nodes of the lattice. We find that the transport of CTQWs between two different nodes is faster than that of the classical continuous-time random walk (CTRWs). The transport speed, which is defined by the ratio of the shortest path length and propagating time, increases with the connectivity parameter m for both the CTQWs and CTRWs. For fixed parameter m, the transport of CTRWs gets slow with the increase of the shortest distance while the transport (speed) of CTQWs turns out to be a constant value. In the long time limit, depending on the network size N and connectivity parameter m, the limiting probability distributions of CTQWs show various paterns. When the network size N is an even number, the probability of being at the original node differs from that of being at the opposite node, which also depends on the precise value of parameter m.Comment: Typos corrected and Phys. ReV. E comments considered in this versio
    • …
    corecore