2,879 research outputs found

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Exact duality in semidefinite programming based on elementary reformulations

    Get PDF
    In semidefinite programming (SDP), unlike in linear programming, Farkas' lemma may fail to prove infeasibility. Here we obtain an exact, short certificate of infeasibility in SDP by an elementary approach: we reformulate any semidefinite system of the form Ai*X = bi (i=1,...,m) (P) X >= 0 using only elementary row operations, and rotations. When (P) is infeasible, the reformulated system is trivially infeasible. When (P) is feasible, the reformulated system has strong duality with its Lagrange dual for all objective functions. As a corollary, we obtain algorithms to generate the constraints of {\em all} infeasible SDPs and the constraints of {\em all} feasible SDPs with a fixed rank maximal solution.Comment: To appear, SIAM Journal on Optimizatio

    An exact duality theory for semidefinite programming based on sums of squares

    Full text link
    Farkas' lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality is infeasible if and only if -1 lies in the quadratic module associated to it. We also present a new exact duality theory for semidefinite programming, motivated by the real radical and sums of squares certificates from real algebraic geometry.Comment: arXiv admin note: substantial text overlap with arXiv:1108.593
    • …
    corecore