442,220 research outputs found

    Spectral problem on graphs and L-functions

    Full text link
    The scattering process on multiloop infinite p+1-valent graphs (generalized trees) is studied. These graphs are discrete spaces being quotients of the uniform tree over free acting discrete subgroups of the projective group PGL(2,Qp)PGL(2, {\bf Q}_p). As the homogeneous spaces, they are, in fact, identical to p-adic multiloop surfaces. The Ihara-Selberg L-function is associated with the finite subgraph-the reduced graph containing all loops of the generalized tree. We study the spectral problem on these graphs, for which we introduce the notion of spherical functions-eigenfunctions of a discrete Laplace operator acting on the graph. We define the S-matrix and prove its unitarity. We present a proof of the Hashimoto-Bass theorem expressing L-function of any finite (reduced) graph via determinant of a local operator Δ(u)\Delta(u) acting on this graph and relate the S-matrix determinant to this L-function thus obtaining the analogue of the Selberg trace formula. The discrete spectrum points are also determined and classified by the L-function. Numerous examples of L-function calculations are presented.Comment: 39 pages, LaTeX, to appear in Russ. Math. Sur

    Discrete Logarithms in Generalized Jacobians

    Full text link
    D\'ech\`ene has proposed generalized Jacobians as a source of groups for public-key cryptosystems based on the hardness of the Discrete Logarithm Problem (DLP). Her specific proposal gives rise to a group isomorphic to the semidirect product of an elliptic curve and a multiplicative group of a finite field. We explain why her proposal has no advantages over simply taking the direct product of groups. We then argue that generalized Jacobians offer poorer security and efficiency than standard Jacobians

    Solution of the generalized periodic discrete Toda equation II; Theta function solution

    Full text link
    We construct the theta function solution to the initial value problem for the generalized periodic discrete Toda equation.Comment: 11 page

    Hard Instances of the Constrained Discrete Logarithm Problem

    Full text link
    The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent xx belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets with succinct representation for which the constrained DLP is hard. We draw on earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for proving lower bounds on the complexity of the constrained DLP, and construct sets with succinct representation with provable non-trivial lower bounds

    Equilibration problem for the generalized Langevin equation

    Get PDF
    We consider the problem of equilibration of a single oscillator system with dynamics given by the generalized Langevin equation. It is well-known that this dynamics can be obtained if one considers a model where the single oscillator is coupled to an infinite bath of harmonic oscillators which are initially in equilibrium. Using this equivalence we first determine the conditions necessary for equilibration for the case when the system potential is harmonic. We then give an example with a particular bath where we show that, even for parameter values where the harmonic case always equilibrates, with any finite amount of nonlinearity the system does not equilibrate for arbitrary initial conditions. We understand this as a consequence of the formation of nonlinear localized excitations similar to the discrete breather modes in nonlinear lattices.Comment: 5 pages, 2 figure

    An Analysis of the Rayleigh-Stokes problem for a Generalized Second-Grade Fluid

    Get PDF
    We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data vv, including vL2(Ω)v\in L^2(\Omega). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.Comment: 23 pp, 4 figures. The error analysis of the fully discrete scheme is shortene

    On the decomposition of Generalized Additive Independence models

    Full text link
    The GAI (Generalized Additive Independence) model proposed by Fishburn is a generalization of the additive utility model, which need not satisfy mutual preferential independence. Its great generality makes however its application and study difficult. We consider a significant subclass of GAI models, namely the discrete 2-additive GAI models, and provide for this class a decomposition into nonnegative monotone terms. This decomposition allows a reduction from exponential to quadratic complexity in any optimization problem involving discrete 2-additive models, making them usable in practice
    corecore