79,667 research outputs found

    Specifying Logic Programs in Controlled Natural Language

    Full text link
    Writing specifications for computer programs is not easy since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge this conceptual gap we propose controlled natural language as a declarative and application-specific specification language. Controlled natural language is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language are automatically translated into Prolog clauses, hence become formal and executable. The translation uses a definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g. anaphora, are resolved with the help of discourse representation theory (DRT). The generated Prolog clauses are added to a knowledge base. We have implemented a prototypical specification system that successfully processes the specification of a simple automated teller machine.Comment: 16 pages, compressed, uuencoded Postscript, published in Proceedings CLNLP 95, COMPULOGNET/ELSNET/EAGLES Workshop on Computational Logic for Natural Language Processing, Edinburgh, April 3-5, 199

    Developing reproducible and comprehensible computational models

    Get PDF
    Quantitative predictions for complex scientific theories are often obtained by running simulations on computational models. In order for a theory to meet with wide-spread acceptance, it is important that the model be reproducible and comprehensible by independent researchers. However, the complexity of computational models can make the task of replication all but impossible. Previous authors have suggested that computer models should be developed using high-level specification languages or large amounts of documentation. We argue that neither suggestion is sufficient, as each deals with the prescriptive definition of the model, and does not aid in generalising the use of the model to new contexts. Instead, we argue that a computational model should be released as three components: (a) a well-documented implementation; (b) a set of tests illustrating each of the key processes within the model; and (c) a set of canonical results, for reproducing the model’s predictions in important experiments. The included tests and experiments would provide the concrete exemplars required for easier comprehension of the model, as well as a confirmation that independent implementations and later versions reproduce the theory’s canonical results

    Semantics and the Computational Paradigm in Cognitive Psychology

    Get PDF
    There is a prevalent notion among cognitive scientists and philosophers of mind that computers are merely formal symbol manipulators, performing the actions they do solely on the basis of the syntactic properties of the symbols they manipulate. This view of computers has allowed some philosophers to divorce semantics from computational explanations. Semantic content, then, becomes something one adds to computational explanations to get psychological explanations. Other philosophers, such as Stephen Stich, have taken a stronger view, advocating doing away with semantics entirely. This paper argues that a correct account of computation requires us to attribute content to computational processes in order to explain which functions are being computed. This entails that computational psychology must countenance mental representations. Since anti-semantic positions are incompatible with computational psychology thus construed, they ought to be rejected. Lastly, I argue that in an important sense, computers are not formal symbol manipulators

    Programming Telepathy: Implementing Quantum Non-Locality Games

    Full text link
    Quantum pseudo-telepathy is an intriguing phenomenon which results from the application of quantum information theory to communication complexity. To demonstrate this phenomenon researchers in the field of quantum communication complexity devised a number of quantum non-locality games. The setting of these games is as follows: the players are separated so that no communication between them is possible and are given a certain computational task. When the players have access to a quantum resource called entanglement, they can accomplish the task: something that is impossible in a classical setting. To an observer who is unfamiliar with the laws of quantum mechanics it seems that the players employ some sort of telepathy; that is, they somehow exchange information without sharing a communication channel. This paper provides a formal framework for specifying, implementing, and analysing quantum non-locality games

    Concurrent Lexicalized Dependency Parsing: The ParseTalk Model

    Full text link
    A grammar model for concurrent, object-oriented natural language parsing is introduced. Complete lexical distribution of grammatical knowledge is achieved building upon the head-oriented notions of valency and dependency, while inheritance mechanisms are used to capture lexical generalizations. The underlying concurrent computation model relies upon the actor paradigm. We consider message passing protocols for establishing dependency relations and ambiguity handling.Comment: 90kB, 7pages Postscrip
    • …
    corecore