3 research outputs found

    Analysing accident reports using structured and formal methods

    Get PDF
    Formal methods are proposed as a means to improve accident reports, such as the report into the 1996 fire in the Channel Tunnel between the UK and France. The size and complexity of accident reports create difficulties for formal methods, which traditionally suffer from problems of scalability and poor readability. This thesis demonstrates that features of an engineering-style formal modelling process, particularly the structuring of activity and management of information, reduce the impact of these problems and improve the accuracy of formal models of accident reports. This thesis also contributes a detailed analysis of the methodological requirements for constructing accident report models. Structured, methodical construction and mathematical analysis of the models elicits significant problems in the content and argumentation of the reports. Once elicited, these problems can be addressed. This thesis demonstrates the benefits and limitations of taking a wider scope in the modelling process than is commonly adopted for formal accident analysis. We present a deontic action logic as a language for constructing models of accident reports. Deontic action models offer a novel view of the report, which highlights both the expected and actual behaviour in the report, and facilitates examination of the conflict between the two. This thesis contributes an objective analysis of the utility of both deontic and action logic operators to the application of modelling accident reports. A tool is also presented that executes a subset of the logic, including these deontic and action logic operators

    The flight of information : new approaches for investigating aviation accident causation

    Get PDF
    The investigation and modelling of aviation accident causation is dominated by linear models. Aviation is, however, a complex system and as such suffers from being artificially manipulated into non-complex models and methods. This thesis addresses this issue by developing a new approach to investigating aviation accident causation through information networks. These networks centralise communication and the flow of information as key indicators of a system‟s health and risk. The holistic approach focuses on the system itself rather than any individual event. The activity and communication of constituent elements, both human and non-human agents, within that system is identified and highlights areas of system failure. The model offers many potential developments and some key areas are studied in this research. Through the centralisation of barriers and information nodes the method can be applied to almost any situation. The application of Bayesian mathematics to historical data populations provides scope for studying error migration and barrier manipulation. The thesis also provides application of these predictions to a flight simulator study in an attempt of validation. Beyond this the thesis also discusses the applicability of the approach to industry. Through working with a legacy airline the methods discussed are used as the basis for a new and forward-thinking safety management system. This holistic approach focuses on the system environment, the activity that takes place within it, the strategies used to conduct this activity, the way in which the constituent parts of the system (both human and non-human) interact and the behaviour required. Each stage of this thesis identifies and expands upon the potential of the information network approach maintaining firm focus on the overall health of a system. It is contended that through the further development and application of this approach, understanding of aviation risk can be improved.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore